This deliverable presents the final software release of Kratos Multiphysics, together with the XMC library, Hyperloom and PyCOMPSs API definitions [13]. This release also contains the latest developements on MPI parallel remeshing in ParMmg. This report is meant to serve as a supplement to the public release of the software. Kratos is “a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface”. XMC is “a Python library for parallel, adaptive, hierarchical Monte Carlo algorithms, aiming at reliability, modularity, extensibility and high performance“. Hyperloom and PyCOMPSs are environments for enabling parallel and distributed computation. ParMmg is an open source software which offers the parallel mesh adaptation of three dimensional volume meshes.
This report addresses the general matter of optimisation under uncertainties, following a previous report on stochastic sensitivities (deliverable 6.2). It describes several theoretical methods, as well their application into implementable algorithms. The specific case of the conditional value at risk chosen as risk measure, with its challenges, is prominently discussed. In particular, the issue of smoothness – or lack thereof – is addressed through several possible approaches. The whole report is written in the context of high-performance computing, with concern for parallelisation and cost-efficiency.
This deliverable presents the software release of Kratos Multiphysics, together with the XMC library, Hyperloom and PyCOMPSs API definition [8]. This report is meant to serve as a supplement to the public release of the software. Kratos is “a framework for building parallel, multi-disciplinary simulation software, aiming at modularity, extensibility, and high performance. Kratos is written in C++, and counts with an extensive Python interface”. XMC is a python library for hierarchical Monte Carlo algorithms. Hyperloom and PyCOMPSs are environments for enabling parallel and distributed computation.
This report brings together methodological research on stochastic optimisation and work on benchmark and target applications of the ExaQute project, with a focus on unsteady problems. A practical, general method for the optimisation of the conditional value at risk is proposed. Three different optimisation problems are described: an oscillator problem selected as a suitable trial and illustration case; the shape optimisation of an airfoil, chosen as a benchmark application in the project; the shape optimisation of a tall building, which is the challenging target application set for ExaQUte. For each problem, the current developments and results are presented, the application of the proposed method is discussed, and the work to be done until the end of the project is laid out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.