However, creating a reliable model for an intensively managed watershed is challenging (Molina-Navarro et al., 2017) given their extensive input data requirements, as well as structural deficiency in representing the complex catchment processes.The availability and quality of data contributes to the reliability of a water quality model, especially for an agro-industrial watershed which requires large sets of meteorological, water constituent, and watershed management data. Although water quality modeling may benefit from high frequency sample observations, data collection methods are not designed to satisfy such modeling requirements (Fu et al., 2020).Instead, water quality constituent loadings are still largely determined with discrete samples collected weekly to quarterly to assess whether
Interconnected food, energy, water systems (FEWS) require systems level understanding to design efficient and effective management strategies and policies that address potentially competing challenges of production and environmental quality. Adoption of agricultural best management practices (BMPs) can reduce nonpoint source phosphorus (P) loads, but there are also opportunities to recover P from point sources, which could also reduce demand for mineral P fertilizer derived from declining geologic reserves. Here, we apply the Integrated Technology-Environment-Economics Model to investigate the consequences of watershed-scale portfolios of agricultural BMPs and environmental and biological technologies (EBTs) for cobenefits of FEWS in Corn Belt watersheds. Via a pilot study with a representative agro-industrial watershed with high P and nitrogen discharge, we show achieving the nutrient reduction goals in the watershed; BMP-only portfolios require extensive and costly land-use change (19% of agricultural land) to perennial energy grasses, while portfolios combining BMPs and EBTs can improve water quality while recovering P from corn biorefineries and wastewater streams with only 4% agricultural land-use change. The potential amount of P recovered from EBTs is estimated as 2 times as much as the agronomic P requirement in the watershed, showing the promise of the P circular economy. These findings inform solution development based on the combination of agricultural BMPs and EBTs for the cobenefits of FEWS in Corn Belt watersheds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.