Launch of electric vehicles have seen a substantial rise for the past few years in emerging economies like India. In countries like India, the growth and penetration of the electric vehicles in the Indian automotive industry specifically for the two-wheeler segments are driven by the demand surge where cost and motor metrics have a substantial deciding factor. The in-wheel hub-motor, which is the prime mover for the two wheelers, decides the comfort zone of the customer in various metrics such as efficiency, torque, speed range, charging, and hence the distance covered. This paper addresses the design formulation of achieving a high torque Permanent Magnet Synchronous Motor (PMSM) conventionally known as the hub-motor, explicitly for electric two-wheeler application. The hub-motor is aimed for the defined D and L (280 × 30 mm) of volumetric constraints to deliver the rated torque of 50 Nm at the spinning speed of 400 rpm. The hub-motor design is aimed for distance range of 108 km/charge, at the vehicle speed of 54 km/hr for the designed diametric and volumetric constraints. This will lead to a typical cost-effective e-vehicle system since the required distance range of 108 km is achievable at the defined rim size and geometry with an enhanced efficiency greater than 90%. The design is carried out by Finite Element Analysis (FEA) using the electromagnetic software MotorSolve. The results computed are analyzed and validated for the optimal loading conditions for the ambient temperature of 50°C. The results confirm the effectiveness of the proposed design formulation and methodology for achieving the high power density hub-motors for satisfying the customer’s comfort zone in establishing the performance metrics of the electromagnetic system.
Numerous challenges are usually faced during the design and development of an autonomous mobile robot. Path planning and navigation are two significant areas in the control of autonomous mobile robots. The computation of odometry plays a major role in developing navigation systems. This research aims to develop an effective method for the computation of odometry using low-cost sensors, in the differential drive mobile robot. The controller acquires the localization of the robot and guides the path to reach the required target position using the calculated odometry and its created new two-dimensional mapping. The proposed method enables the determination of the global position of the robot through odometry calibration within the indoor and outdoor environment using Graphical Simulation software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.