A new 3-D chaotic dynamical system with a peanut-shaped closed curve of equilibrium points is introduced in this work. Since the new chaotic system has infinite number of rest points, the new chaotic model exhibits hidden attractors. A detailed dynamic analysis of the new chaotic model using bifurcation diagrams and entropy analysis is described. The new nonlinear plant shows multi-stability and coexisting convergent attractors. A circuit model using MultiSim of the new 3-D chaotic model is designed for engineering applications. The new multi-stable chaotic system is simulated on a field-programmable gate array (FPGA) by applying two numerical methods, showing results in good agreement with numerical simulations. Consequently, we utilize the properties of our chaotic system in designing a new cipher colour image mechanism. Experimental results demonstrate the efficiency of the presented encryption mechanism, whose outcomes suggest promising applications for our chaotic system in various cryptographic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.