The mechanisms regulating T helper 9 (TH9) cells and TH9-mediated diseases remain poorly defined. Here, we demonstrate that the receptor OX40 (Tnfrsf4) is a powerful inducer of TH9 cells in vitro and TH9-dependent airway inflammation in vivo. Under TGF-β based polarizing conditions, OX40 ligation eliminated production of induced regulatory T cells and TH17 cells, and divertedCD4+Foxp3− T cells to a TH9 phenotype. Mechanistically, OX40 activated the ubiquitin ligase TRAF6, which triggered the induction of NF-kB-inducing kinase (NIK) in CD4+ T cells and the non-canonical NF-kB pathway which subsequently lead toTH9 generation. Thus, our study identifies a previously unknown mechanism of TH9 induction and may have important clinical implications in allergic inflammation.
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase ؉ xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and -catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinaseinactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calciuminduced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src. The tight junction (TJ)1 forms a barrier to the diffusion of toxins, allergens, and pathogens across the epithelial tissue.Three types of transmembrane proteins, occludin, claudins, and junction adhesion molecule, have been identified at the TJ (1-3). The intracellular domains of these transmembrane proteins interact with a number of plaque proteins, which in turn anchors TJ protein complex to the actin cytoskeleton (4, 5). Although the specific interactions among TJ proteins are yet to be delineated, there is evidence to support occludin interaction with zonula occludens (ZO)-1, ZO-2, and ZO-3 (5-7). These protein-protein interactions are crucial for the assembly of TJ and the maintenance of epithelial barrier functions (6). A significant body of evidence indicates that TJ is under dynamic regulation by intracellular signaling molecules. Although only little is known about the specific interactions of signaling molecules with the TJ proteins, a number of signaling molecules, including c-Src, c-Yes, protein kinase C, and G-proteins, appear to be localized at the vicinity of TJ (1). A recent study indicates that signaling molecules such as phosphatidylinositol 3-kinase, c-Yes, and protein kinase C may be associated with the Cterminal tail of occludin (8). Additionally, pharmacologic modulations of the activity...
TIM (T cell, Ig, mucin) proteins can regulate T cell immune responses. Tim-4 mRNA is not expressed in T cells, but exclusively in APCs. Tim-4 is a ligand for Tim-1 and Tim-4.Ig fusion protein was shown to either inhibit or expand T cells. However, the molecular basis for such opposite effects was not defined. By generating mAbs, we show that expression of Tim-4 protein is restricted to CD11c+ and CD11b+ cells and is up-regulated upon activation. We show that Tim-4 specifically phosphorylates Tim-1 and induces T cell expansion by enhancing cell division and reducing apoptosis. Tim-4 also induces the phosphorylation of signaling molecules LAT, Akt, and ERK1/2 in T cells. Tim-4, expressed on APCs, is a costimulatory molecule that promotes T cell expansion and survival by cross-linking Tim-1 on T cells.
Hypertrophic cardiac growth is a major compensatory response of the heart to an increased mechanical (hemodynamic) load in the form of either pressure or volume overload. Although this response is initially compensatory, a transition from this state to failure occurs when further growth of the heart is not sufficient to normalize the wall stress and maintain contractile function (1). Therefore, a major research interest in cardiovascular disease is to understand how the increase in hemodynamic load is transmitted intracellularly for mediating hypertrophic growth. Although the mechanical load appears to directly regulate the hypertrophic growth initiation, the signaling mechanism that connects load to such growth is not well understood.A major cellular event during cardiac hypertrophy is increased protein synthesis (1-5). Enhanced protein synthesis can occur via accelerated protein translation, increased biogenesis of translational components, or both. A significant amount of mRNA of vertebrate cells possesses a unique 5Ј-terminal oligopyrimidine (5Ј-TOP) 1 sequence in the 5Ј-untranslated region (5Ј-UTR), and these mRNA species generally code for specific ribosomal proteins (6, 7). Their translation is largely controlled via phosphorylation of the 40 S ribosomal S6 protein (S6 protein) at its C terminus (8) by p70/85 S6 kinase (S6K1) (9 -12). There are two isoforms of S6K1: the 70-kDa isoform was first isolated from mouse 3T3 cells (13), and the 85-kDa isoform of this kinase was then identified (14). The p85 isoform is expressed from the same transcript as the p70 isoform through an alternative translational initiation start site, which adds a 23-amino acid nuclear localization signal to the N terminus (15,16). Therefore, the 85-kDa isoform is predominantly in the nucleus, whereas the 70-kDa isoform is present mostly in the cytoplasm. Both the S6K isoforms are collectively called p70/85S6K, p70S6K, or S6K1 and have been shown to phosphorylate the S6 protein and mediate the biogenesis of the translational components, including several of the ribosomal proteins and elongation factors (12). The p85 isoform has been shown to have additional roles in translational control, G 1 to S phase transition, and increased DNA synthesis (17). Recent studies using S6K1 knockout mice (18) demonstrate no appreciable change in S6 protein phosphorylation, 5Ј-TOP mRNA translation, or cell growth, although these mice exhibited a small mouse phenotype. These studies (18) and other independent studies (19 -21) resulted in the discovery of another S6K (S6K2), which possesses 70% homology with the p70 isoform of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.