Our data suggest a probable role of metals in the aetiology of diabetes and cardiovascular diseases in rural communities. Identifying and eliminating the causes of increased levels of these environmental chemicals could have a beneficial impact on the burden of non-communicable diseases in rural population.
A green synthesis of iron oxide nanoparticles (FeNPs) was developed using Murraya koenigii leaf extract as reducing and stabilizing agent. UV-vis spectra show that the absorption band centred at a wavelength of 277 nm which corresponds to the surface plasmon resonances of synthesized FeNPs. Fourier transform infrared spectroscopy spectrum exhibits that the characteristic band at 580 cm(-1) is assigned to Fe-O of γ-Fe2O3. Transmission electron microscopy image confirms that the spherical with irregular shaped aggregates and average size of nanoparticles was found to be ∼59 nm. The effect of synthesized FeNPs on fermentative hydrogen production was evaluated from glucose by Clostridium acetobutylicum NCIM 2337. The hydrogen yield in control experiment was obtained as 1.74 ± 0.08 mol H2/mol glucose whereas the highest hydrogen yield in FeNPs supplemented experiment was achieved as 2.33 ± 0.09 mol H2/mol glucose at 175 mg/L of FeNPs. In addition, the hydrogen content and hydrogen production rate were also increased from 34 ± 0.8 to 52 ± 0.8 % and 23 to 25.3 mL/h, respectively. The effect of FeNPs was compared with supplementation of FeSO4 on fermentative process. The supplementation of FeNPs enhanced the hydrogen production in comparison with control and FeSO4. The supplementation of FeNPs led to the change of the metabolic pathway towards high hydrogen production due to the enhancement of ferredoxin activity. The fermentation type was shifted from butyrate to acetate/butyrate fermentation type at the addition of FeNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.