There has been tremendous interest in recent years in a new class of multi-component metallic alloys that are referred to as high entropy alloys, or more generally, as complex concentrated alloys. These multi-principal element alloys represent a new paradigm in structural material design, where numerous desirable attributes are achieved simultaneously from multiple elements in equimolar (or near equimolar) proportions. While there are several review articles on alloy development, microstructure, mechanical behavior, and other bulk properties of these alloys, then there is a pressing need for an overview that is focused on their surface properties and surface degradation mechanisms. In this paper, we present a comprehensive view on corrosion, erosion and wear behavior of complex concentrated alloys. The effect of alloying elements, microstructure, and processing methods on the surface degradation behavior are analyzed and discussed in detail. We identify critical knowledge gaps in individual reports and highlight the underlying mechanisms and synergy between the different degradation routes.
Bioimplants are susceptible to simultaneous wear and corrosion degradation in the aggressive physiological environment. High entropy alloys with equimolar proportion of constituent elements represent a unique alloy design strategy for developing bioimplants due to their attractive mechanical properties, superior wear, and corrosion resistance. In this study, the tribo-corrosion behavior of an equiatomic MoNbTaTiZr high entropy alloy consisting of all biocompatible elements was evaluated and compared with 304 stainless steel as a benchmark. The high entropy alloy showed a low wear rate and a friction coefficient as well as quick and stable passivation in simulated body fluid. An increase from room temperature to body temperature showed excellent temperature assisted passivity and nobler surface layer of the high entropy alloy, resulting in four times better wear resistance compared to stainless steel. Stem cells and osteoblast cells displayed proliferation and migratory behavior, indicating in vitro biocompatibility. Several filopodia extensions on the cell periphery indicated early osteogenic commitment, and cell adhesion on the high entropy alloy. These results pave the way for utilizing the unique combination of tribo-corrosion resistance, excellent mechanical properties, and biocompatibility of MoNbTaTiZr high entropy alloy to develop bioimplants with improved service life and lower risk of implant induced cytotoxicity in the host body.
CoCrFeMnNi high entropy alloys (HEAs) were additively manufactured (AM) by laser powder bed fusion and their corrosion resistance in 3.5 wt% NaCl solution was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests. A systematic study of AM CoCrFeMnNi HEAs’ porosity under a wide range of laser processing parameters was conducted and a processing map was constructed to identify the optimal laser processing window for CoCrFeMnNi HEAs. The near fully dense AM CoCrFeMnNi HEAs exhibit a unique non-equilibrium microstructure consisting of tortuous grain boundaries, sub-grain cellular structures, columnar dendrites, associated with some processing defects such as micro-pores. Compared with conventional as-cast counterpart, the AM CoCrFeMnNi HEAs showed higher pitting resistance (ΔE) and greater polarization resistance (Rp). The superior corrosion resistance of AM CoCrFeMnNi HEAs may be attributed to the homogeneous elemental distribution and lower density of micro-pores. Our study widens the toolbox to manufacture HEAs with exceptional corrosion resistance by additive manufacturing.
Incipient plasticity in multi-principal element alloys, CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi was evaluated by nano-indentation and compared with pure Ni. The tests were performed at a loading rate of 70 μN/s in the temperature range of 298 K to 473 K. The activation energy and activation volume were determined using a statistical approach of analyzing the “pop-in” load marking incipient plasticity. The CoCrFeMnNi and Al0.1CoCrFeNi multi-principal element alloys showed two times higher activation volume and energy compared to CoCrNi and pure Ni, suggesting complex cooperative motion of atoms for deformation in the five component systems. The small calculated values of activation energy and activation volume indicate heterogeneous dislocation nucleation at point defects like vacancy and hot-spot.
Creep is a serious concern reducing the efficiency and service life of components in various structural applications. Multi-principal element alloys are attractive as a new generation of structural materials due to their desirable elevated temperature mechanical properties. Here, time-dependent plastic deformation behavior of two multi-principal element alloys, CoCrNi and CoCrFeMnNi, was investigated using nano-indentation technique over the temperature range of 298 K to 573 K under static and dynamic loads with applied load up to 1000 mN. The stress exponent was determined to be in the range of 15 to 135 indicating dislocation creep as the dominant mechanism. The activation volume was ~25b3 for both CoCrNi and CoCrFeMnNi alloys, which is in the range indicating dislocation glide. The stress exponent increased with increasing indentation depth due to higher density and entanglement of dislocations, and decreased with increasing temperature owing to thermally activated dislocations. The results for the two multi-principal element alloys were compared with pure Ni. CoCrNi showed the smallest creep displacement and the highest activation energy among the three systems studied indicating its superior creep resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.