Recently, electrospinning (ES) of fibers has been shown to be an attractive strategy for drug delivery. One of the main features of ES is that a wide variety of drugs can be loaded into the fibers to improve their bioavailability, to enhance dissolution, or to achieve controlled release. Besides, ES is a continuous technology with low energy consumption, which can make it a very economic production alternative to the widely used freeze drying and spray drying. However, the low production rate of laboratory‐scaled ES has limited the industrial application of the technology so far. This article covers the various ES technologies developed for scaled‐up fiber production with an emphasis on pharmaceutically relevant examples. The methods used for increasing the productivity are complied, which is followed by a review of specific examples from literature where these technologies are utilized to produce oral drug delivery systems. The different technologies are compared in terms of their basic principles, advantages, and limitations. Finally, the different downstream processing options to prepare tablets or capsules containing the electrospun drug are covered as well.
This article is categorized under:
Therapeutic Approaches and Drug Discovery > Emerging Technologies
The scale-up criterion did not account for the differences between the droplet-drying gas mixing and residence time distribution within the two spray dryers. Therefore, production scale experiments are required in order to obtain similar product characteristics as in pilot scale.
The present work demonstrates the potential of spray dryer equipped with a 3-fluid nozzle in microencapsulation of proteins into PLGA matrices with different characteristics by varying process and formulation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.