The tracking of pathogen burden and host responses with minimal-invasive methods during respiratory infections is central for monitoring disease development and guiding treatment decisions. Utilizing a standardized murine model of respiratory Influenza A virus (IAV) infection, we developed and tested different supervised machine learning models to predict viral burden and immune response markers, i.e. cytokines and leukocytes in the lung, from hematological data. We performed independently in vivo infection experiments to acquire extensive data for training and testing purposes of the models. We show here that lung viral load, neutrophil counts, cytokines like IFN-γ and IL-6, and other lung infection markers can be predicted from hematological data. Furthermore, feature analysis of the models shows that blood granulocytes and platelets play a crucial role in prediction and are highly involved in the immune response against IAV. The proposed in silico tools pave the path towards improved tracking and monitoring of influenza infections and possibly other respiratory infections based on minimal-invasively obtained hematological parameters.
During the course of respiratory infections such as influenza, we do have a very limited view of immunological indicators to objectively and quantitatively evaluate the outcome of a host. Methods for monitoring immunological markers in a host’s lungs are invasive and expensive, and some of them are not feasible to perform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.