Sample diversion and bacterial culture are effective methods to reduce bacterial risk with WBP transfusion. Bacterial contamination of PSPs was assessed at 5.8-fold our current rate for apheresis PLTs utilizing comparable culture protocols.
The biophysical properties of small conductance Ca 2؉ -activated K ؉ (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I AHP and the Ca 2؉ -activated K ؉ channels mediating the slow I AHP (sI AHP ) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 (ϳ1750-fold) and SK3 (ϳ70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC 50 for SK2 channels ؍ 24 pM). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling.
The hypothesis that heparin-coated perfusion circuits reduce thrombin formation and activity; fibrinolysis; and platelet, complement, and neutrophil activation was tested in 20 consecutive, randomized adults who had cardiopulmonary bypass. Twenty identical perfusion systems were used; in 10, all blood-contacting surfaces were coated with partially degraded heparin (Carmeda process; Medtronic Cardiopulmonary, Anaheim, Calif.). All patients received a 300 U/kg dose of heparin. Activated clotting times were maintained longer than 400 seconds. Cardiopulmonary bypass lasted 36 to 244 minutes. Blood samples for platelet count, platelet response to adenosine diphosphate, plasma beta-thromboglobulin, inactivated complement 3b, neutrophil elastase, fibrinopeptide A, prothrombin fragment F1.2, thrombin-antithrombin complex, tissue plasminogen activator, plasminogen activator inhibitor-1, plasmin alpha 2-antiplasmin complex, and D-dimer were obtained at these times: after heparin was given, 5 and 30 minutes after cardiopulmonary bypass was started, within 5 minutes after bypass was stopped, and 15 minutes after protamine was given. After cardiopulmonary bypass, tubing segments were analyzed for surface-adsorbed anti-thrombin, fibrinogen, factor XII, and von Willebrand factor by radioimmunoassay. Heparin-coated circuits significantly (p < 0.001) reduced platelet adhesion and maintained platelet sensitivity to adenosine diphosphate (p = 0.015), but did not reduce release of beta-thromboglobulin. There were no significant differences between groups at any time for fibrinopeptide A, prothrombin fragment F1.2, or thrombin-antithrombin complex or in the markers for fibrinolysis: D-dimer, tissue plasminogen activator, plasminogen activator inhibitor-1, and alpha 2-antiplasmin complex. In both groups, concentrations of prothrombin fragment F1.2 and thrombin-antithrombin complex increased progressively and significantly during cardiopulmonary bypass and after protamine was given. Concentrations of D-dimer, alpha 2-antiplasmin complex, and plasminogen activator inhibitor-1 also increased significantly during bypass in both groups. Fibrinopeptide A levels did not increase during bypass but in both groups increased significantly after protamine was given. No significant differences were observed between groups for levels of inactivated complement 3b or neutrophil elastase. Radioimmunoassay showed a significant increase in surface-adsorbed antithrombin on coated circuits but no significant differences between groups for other proteins. We conclude that heparin-coated circuits used with standard doses of systemic heparin reduce platelet adhesion and improve platelet function but do not produce a meaningful anticoagulant effect during clinical cardiopulmonary bypass. The data do not support the practice of reducing systemic heparin doses during cardiac operations with heparin-coated extracorporeal perfusion circuitry.
An in vitro continuous flow system with whole human blood was used to study blood-biomaterial interactions on a base polyurethane and three modified surfaces in the presence and absence of circulating Staphylococcus epidermidis. We hypothesized that the composition of the protein layer adsorbed on the surface of the biomaterial would influence the response of blood components and bacteria. We examined the test surfaces for adsorption of nine plasma proteins and adsorption profiles differed on the four surfaces. The positively charged surface, UC, adsorbed significantly higher amounts of fibronectin (P < .01), von Willebrand factor (P < .01), and fibrinogen (P < .05) than the other materials. As a consequence of increased adsorption of these adhesive proteins, the adhesion of platelets and bacteria was greater on UC than on any other surface. On the base polyurethane, BC, and the negatively charged surface, UA, protein adsorption was low, and these materials were largely free of adherent blood cells and bacteria. The heparinized surface, UH, adsorbed higher quantities (P < .01) of Hageman factor and high molecular weight kininogen relative to the other surfaces. Platelet adhesion, and surface coagulation were prominent on UC, and may have contributed to increased bacterial adhesion on this surface. In the presence of circulating bacteria, adsorption was generally lower than in the absence of bacteria. The pattern of protein adsorption was largely unaffected by the strain of circulating bacteria, but platelet responses (adhesion and activation) were greater in the presence of slime-producing S. epidermidis as compared to the non-slime-producing strain, suggesting that slime may have a direct activating effect on platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.