In this work, a low-cost PDMS micro-pump and -valve have been designed and developed to control multiple reagents for enzyme-linked immunosorbent assay (ELISA) on a programmable lab-on-a-chip (LOC) platform. The micro pump and valves were precisely controlled by selectively pressurizing the PDMS channels and chamber to actuate the multiple reagents in a controlled manner. Selective pressurizing of the PDMS structures was initiated by a simple system that maneuvered a single roller bar operated by a programmed microprocessor. The performance of the micro-pump was fully characterized and a minimum fluid volume of 1 μL was controlled. Also, the on-chip microvalves were programmed to flow the multiple reagents to automatically process the multi-step ELISA procedures. By applying the proposed platform, 19.40 pg ml-1 cardiac troponin T (cTnT) was successfully detected on the LOC device by using multiple programmed valves as multiple steps of the enzyme-linked sandwich immunoassay. As a result, the developed micro-pump and -valve, which were successfully applied to actuate a series of solutions in a controlled manner, can be widely applied to lab-on-a-chip based bioassays.
A novel device of smart pipette has been suggested to extract and deliver plasma from whole blood in a disposable format. By operating an on-chip disposable micropump, approximately 30 μL of plasma was obtained from 100 μL of whole blood within 5 min without any external equipment for point-of-care blood analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.