A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40 degrees C. The Michaelis constant (Km) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.
A gene, phoI, coding for a phosphatase from Enterobacter sp. 4 was cloned in Escherichia coli and sequenced. Analysis of the sequence revealed one open reading frame (ORF) that encodes a 269-amino acid protein with a calculated molecular mass of 29 kDa. PhoI belongs to family B acid phosphatase and exhibits 49.4% identity and 62.4% homology to the hel gene from Heamophilus influenzae, which encoded an outer membrane protein (P4). The optimum pH and temperature for phosphatase activity were pH 5.5 and 40 degrees C, respectively. Its specific activity on rho-nitrophenyl phosphatate was 70 U/mg at pH 5.5 and 40 degrees C. Enzyme activity was inhibited by Al3+, EDTA, and DTT, but fivefold activated by Cu2+ ion (350 U/mg). PhoI showed a strong synergistic effect when used with a purified E. coli phytase, AppA, to estimate combination effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.