Primary tumors in the upper portion of the thyroid are closely linked to skip metastasis. Careful preoperative evaluation of lateral cervical lymph nodes is suggested when a tumor is in the upper portion.
Objectives: Human mesenchymal stem cells (MSCs) are efficacious in various cellular therapeutic applications and have been isolated from several tissues. Recent studies have reported that human tonsil tissue contains a new source of progenitor cells, potentially applicable for cell-based therapies. Information about the effects of donor age, long-term passage and cryopreservation are essential for clinical applications and cell-based therapies. Therefore, the authors investigated how the morphology, cell-surface markers, proliferation potential and differentiation capacity of tonsil-derived MSCs (T-MSCs) were affected by donor age, long-term passage, and cryopreservation. Materials and Methods: T-MSCs were isolated from tonsillar tissue of 20 patients undergoing tonsillectomy. Authors evaluated the effects of donor-age, long-term passage, and cryopreservation on the morphology, surface markers, proliferation potential and differentiation capacities of T-MSCs. Results: T-MSCs exhibited a fibroblast-like, spindle-shaped appearance. There were no significant morphological differences according to donor age, long-term passage or cryopreservation. T-MSCs isolated from donors of various ages were positive for markers CD90, CD44, and CD73, but negative for CD45, CD31, and HLA-DR. There were no significant differences in the expression of positive and negative surface markers as a function of donor age, long-term passage and cryopreservation. T-MSCs from different donor age groups showed similar proliferation potentials after passage 2. After long-term passage and cryopreservation, there were no significant morphological differences. Cryopreservation did not affect the proliferation potential of T-MSCs, but there was a significant decrease in the proliferation potential in long-term passage T-MSCs (passage 15). The effect of donor age, long-term passage and cryopreservation on the in vitro adipogenic, osteogenic, and chondrogenic differentiation potential of T-MSCs was not significant. Conclusion: The effect of donor age, long-term passage culture, and cryopreservation on T-MSC properties are negligible, except for the proliferation capacity of long-term cultured T-MSCs. Therefore, T-MSCs are considered to be promising MSCs that can be used as future alternative sources for autologous or allogenic MSCs.
Human mesenchymal stem cells (MSCs) are a promising tool for therapeutic applications in cell-based therapy and regenerative medicine, and MSCs from the human palatine tonsils have recently been used as a new tissue source. However, the understanding of the proliferation and differentiation capacity of tonsil-derived MSCs (T-MSCs) is limited. In this study, we compared the proliferative potential of T-MSCs with those of bone marrow MSCs (BM-MSCs) and adipose tissue-derived MSCs (A-MSCs). Additionally, we investigated the underlying mechanism of T-MSC function. We showed that T-MSCs proliferated faster than A-MSCs and BM-MSCs in methylthiazolyl diphenyl-tetrazolium (MTT) assays, cell count assays, and cell cycle distribution analyses. DNA microarray and real-time PCR analyses revealed that the expression of fibroblast growth factor-5 (FGF5) was significantly elevated in T-MSCs compared with those in A-MSCs and BM-MSCs. Cell growth curves showed a difference in cell growth between untreated cells and siFGF5-treated T-MSCs. The administration of recombinant human FGF5 (rhFGF5) to the cells transfected with siFGF5 led to a significant increase in the proliferation rates. The administration of rhFGF5 to T-MSCs led to an increase in the levels of phosphorylated ERK1/2. However, treatment with siFGF5 resulted in an overall decrease in the level of phosphorylated ERK1/2. The osteogenic differentiation of T-MSCs was reduced following siFGF5 transfection, and it recovered to near-normal levels when rhFGF5 was added. These findings indicate that T-MSCs show significantly higher proliferative potential compared with those of BM-MSCs and A-MSCs. FGF5 facilitates cell proliferation through ERK1/2 activation, and it influences the osteogenic differentiation of T-MSCs.
Background: Fluorine-18 fluorodeoxyglucose positron emission tomography/CT ( 18 F-FDG PET/CT) has been widely accepted as an effective method for detecting recurrent papillary thyroid cancer (PTC) in patients with increased serum thyroglobulin (Tg) or Tg antibody (TgAb) levels and negative whole-body scintigraphy (WBS) results. The role of WBS as a diagnostic tool in detecting recurrence has relatively decreased recently. However, only a few studies have examined the usefulness of 18 F-FDG PET/CT for evaluating patients with recurrent PTC, regardless of the WBS results. The purpose of this analysis was to evaluate the diagnostic value and prognostic role of
As tissue engineering and regenerative medicine have evolved recently, stem cell therapy has been investigated in the field of impaired wound healing. Several studies have reported that mesenchymal stem cells derived from various tissues including bone marrow and adipose tissue can exert the regenerative efficacy in the wound healing. Previously, we have demonstrated the isolation and characterization of tonsil-derived mesenchymal stem cells (TMSCs) with excellent proliferative property. In the present study, we aimed to evaluate the regenerative efficacy of TMSCs in the wound healing process. Two distinct cutaneous surgical defects were generated in the dorsum of mice. Each wound was treated with TMSCs or phosphate-buffered saline (PBS), respectively. After sacrifice, the skin and subcutaneous tissues around the surgical defect were harvested and assessed for inflammation, re-epithelialization, dermal regeneration, and granulation tissue formation. The administration of TMSCs into wound beds significantly promoted the repair of surgical defects in mice. Especially, TMSCs efficiently contributed to the attenuation of excessive inflammation in the surgical lesion, as well as the augmentation of epidermal and dermal regeneration. To elucidate the underlying mechanisms, TMSCs were analyzed for their potency in immunomodulatory ability on immune cells, stimulatory effect on the proliferation of keratinocytes, and fibroblasts, as well as the regulation of fibroblast differentiation. TMSCs inhibited the non-specific or T-cell-specific proliferation of peripheral blood mononuclear cells, as well as the M1 polarization of macrophage-like cells. Moreover, TMSCs augmented the proliferation of skin-constituting fibroblasts and keratinocytes while they suppressed the differentiation of fibroblasts into myofibroblasts. Taken together, our findings demonstrate the regenerative potential of TMSCs in wound healing process through the regulation on inflammation, proliferation, and remodeling of various skin cells, implying that TMSCs can be a promising alternative for wound repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.