Background and Objectives: This study aimed to evaluate the utility and accuracy of dual-energy automatic plaque removal (DE-APR) in patients with symptomatic peripheral arterial disease (PAD) using digital subtraction angiography (DSA) as the reference standard. Materials and Methods: We retrospectively analyzed 100 patients with PAD who underwent DE computed tomography angiography (DE-CTA) and DSA of the lower extremities. DE-CTA was used to generate APR subtracted images. In the three main arterial segments (aorto-iliac segment, femoro-popliteal segment, and below-the-knee segment), the presence or absence of hemodynamically significant stenosis (>50%) and calcification was assessed using the images. CTA data were analyzed using different imaging approaches (DE-standard reconstruction image (DE-SR), DE-APR maximum intensity projection image (APR), and DE-SR with APR). Results: For all segments evaluated, the sensitivity, specificity, and accuracy for detecting significant stenosis were 98.16%, 81.01%, and 89.58%, respectively, with DE-SR; 97.79%, 83.33%, and 90.56%, respectively, with APR; and 98.16%, 92.25%, and 95.20%, respectively, with DE-SR with APR. DE-SR with APR had greater accuracy than DE-SR or APR alone (p < 0.001 and p < 0.001, respectively). When analyzed based on vascular wall calcification, the accuracy of DE-SR with APR remained greater than 90% regardless of calcification severity, whereas DE-SR showed a considerable reduction in accuracy in moderate to severe calcification. In the case of APR, the degree of vascular wall calcification did not significantly influence the accuracy in the aorto-iliac and femoro-popliteal segments. DE-SR with APR achieved significantly higher diagnostic accuracy for all lower extremity segments in evaluating hemodynamically significant stenosis in patients with symptomatic PAD and transcended the impact of vascular wall calcification compared with DE-SR. Conclusions: APR demonstrated favorable diagnostic performance in the aorto-iliac and femoro-popliteal segments, exhibiting good agreement with DSA even in cases of moderate to severe vascular wall calcification.
Two separate studies were conducted to establish bioequivalence (BE) for two doses of atorvastatin/ metformin sustained-release (SR) fixed dose combination (FDC) versus the same dosage of the individual component (IC) tablets in healthy male subjects under fed conditions (study 1, BE of atorvastatin/metformin SR 20/500 mg FDC; study 2, BE of atorvastatin/metformin SR 20/750 mg FDC). Each study was a randomized, open-label, single oral dose, two-way crossover design. Serial blood samples were collected pre-dose and up to 36 hours post-dose for atorvastatin and 24 hours for metformin. Plasma concentrations of atorvastatin, 2-OH atorvastatin and metformin were analyzed using a validated liquid chromatography tandem mass-spectrometry. A non-compartmental analysis was used to calculate pharmacokinetic (PK) variables and analysis of variance was performed on the lognormal-transformed PK variables. A total of 75 subjects completed the study 1 (36 subjects) and study 2 (39 subjects). The 90% confidence intervals for the adjusted geometric mean ratio of Cmax and the AUC0-t were within the predefined 0.80 to 1.25 range. The number of subjects reporting at least one adverse event following FDC treatments was comparable to that following IC treatments. The two treatments were well tolerated. Therefore, atorvastatin/metformin SR 20/500 mg and 20/750 mg FDC tablets are expected to be used as alternatives to IC tablets to decrease the pill burden and increase patient compliance.
Background and Objectives: This study aimed to evaluate the added value of cone-beam computed tomography (CBCT) for detecting hepatocellular carcinomas (HCC) and feeding arteries during transcatheter arterial chemoembolization (TACE). Material and methods: Seventy-six patients underwent TACE and CBCT. We subcategorized patients into groups I (61 patients: possible superselection of tumor/feeding arteries) and II (15 patients: limited superselection of tumor/feeding arteries). We evaluated fluoroscopy time and radiation dose during TACE. Two blinded radiologists independently performed an interval reading based on digital subtraction angiography (DSA) imaging only and DSA combined with CBCT in group I. Result: The mean total fluoroscopy time was 1456.3 ± 605.6 s. The mean dose–area product (DAP), mean DAP of CBCT, and mean ratio of DAP of CBCT to total DAP was 137.1 ± 69.2 Gy cm2, 18.3 ± 7.1 Gy cm2, and 13.3%, respectively. The sensitivity for detecting HCC increased after the additional CBCT reading, from 69.6% to 97.3% and 69.6% to 96.4% for readers 1 and 2, respectively. The sensitivity for detecting feeding arteries increased from 60.3% to 96.6% and 63.8% to 97.4% for readers 1 and 2, respectively. Conclusions: CBCT can increase sensitivity for detecting HCCs and feeding arteries without significantly increasing the radiation exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.