This study examines the structural integrity assessment technique used for the asphalt pavement system that considers the modeling errors introduced by material uncertainties. To this end, the artificial neural network is utilized to estimate the elastic modulus of soil layers by using the measured deflection data from the Falling Weight Deflectometer test. A wave analysis program for a multi-layered pavement system is developed based on the spectral element method for more accurate and faster calculation. The developed program is applied for the numerical simulation of the Falling Weight Deflectometer tests, specifically for the reliability analysis and the generation of training and testing patterns for the neural network. The effects of uncertainties in the material properties for modeling a given pavement system such as Poisson ratio and layer thickness are intensively investigated using the Monte Carlo Simulation. Results reveal that the amplitude of impact loads is most significant, followed by the layer thickness and the Poisson ratio, which are more significant on the max deflections than other parameters. The evaluation capability of the neural network is also investigated when the input data is corrupted by the modeling errors. It is found that the estimation results can be significantly deviated due to the modeling errors. To reduce the effect of the modeling error, (to improve the robustness of the algorithm), we proposed an alternative scheme in order to generate the training patterns taking into consideration any modeling errors. The study then concludes that the estimation results can be improved by using the proposed training patterns from an extensive numerical simulation study.
PURPOSES :This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions.
METHODS :For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions.
RESULTS :This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles.
CONCLUSIONS :Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.
Keywords
PURPOSES :This study is to evaluate moisture susceptibility of asphalt mixtures by using non-destructive impact wave and to determine durability so as to decrease the gap between before and after freezing in the future.
METHODS :Using non-destructive impact wave, this study is to determine the dynamic modulus of asphalt specimen. Furthermore, the results obtained from two experiment accelerometers are used for the dynamic modulus determination. The dynamic moduli of specimens are compared with those of the freezing-thawing specimens.
RESULTS :Test results showed that the dynamic modulus before freezing and thawing environment loads at each temperature dropped about 3.7% after the environmental loads. Furthermore, correlation analysis indicates that transition of dynamic modulus at each point is about 89.59%.
CONCLUSIONS :Evaluation of asphalt mixtures using non-destructive impact wave has excellent repeatability and simple equipment for the test. Consequently, the method in the study will be useful for evaluating the characteristics of a various asphalt mixtures.
Keywords non-destructive impact wave, dynamic modulus, temperature, MPE (Mean Percentage Error), RMSE (Root Mean Square Error), correlation analysis 53Jang,
PURPOSES :The rumble strip installed at the highway near the tollgate has the purpose to reduce the vehicle velocity or prevent sleepiness by awakening people to the danger. These rumble strip has different vibration decibel from the rumble strip shapes, resulting in some fatigue damage to human because a driver suffers from a lot of stress and displeasure. In this connection, the objective of this paper is to analyze the vibration decibel perceived by a driver in the vehicle under some conditions.
METHODS :The vibration decibel conveyed from the tire can be analyzed. The frequency analysis methods were used according to DFT (Discrete Fourier Transform) analysis, FFT (Fast Fourier Transform) analysis, CPB (Constant Percentage Bandwidth) analysis. But the frequency analysis method in this paper is the 1/24 OCT(Octave) band analysis because of the convenience of the analysis and the overall vibration amplitude along the frequency.
RESULTS :By using the results of the vibration decibel after analyzing the 1/24 OCT band analysis, these results can be compared from some conditions (e.g., rumble strip shape, uniform velocity of a vehicle, road condition, mass of a vehicle). As a result, the numerical values of decibel are not directly proportional to the vehicle velocity.
CONCLUSIONS :At the condition that a vehicle is passing by the rumble strip, the value of a vibration decibel at the rumble strip of the cylinder shape is smaller than the rumble strip of rectangular shape regardless of the rumble strip depth and width. At the mass condition, the more a vehicle is massive, the more the vibration decibel increases. At the road condition, the vibration decibel at the wet road is smaller than the value at dry road condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.