IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4+ T cells and stimulating the proliferation of memory CD4+ T cells. We investigated the pathogenic role of IL-23 in CD4+ T cells in mice lacking the IL-1R antagonist (IL-1Ra−/−), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra−/− mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1β further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4+ T cells of IL-1Ra−/− mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4+ T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-κB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra−/− model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.
We investigated the relationship of memory CD4+ T cells with the evolution of influenza virus-specific CD4+ T cell responses in healthy young and elderly people. Elderly individuals had a similar frequency of CD69+CD4+ T cells producing IFN-γ and TNF-α at 1 wk, but a lower frequency of these CD4+ T cells at 3 mo after influenza vaccination. Although the elderly had a higher frequency of central memory (CM; CCR7+CD45RA−) CD4+ T cells, they had a significantly lower frequency of effector memory (EM; CCR7−CD45RA−) CD4+ T cells, and the frequency of the latter memory CD4+ T cells positively correlated with the frequency of influenza virus-specific CD69+CD4+ T cells producing IFN-γ at 3 mo. These findings indicate that the elderly have an altered balance of memory CD4+ T cells, which potentially affects long term CD4+ T cell responses to the influenza vaccine. Compared with the young, the elderly had decreased serum IL-7 levels that positively correlated with the frequency of EM cells, which suggests a relation between IL-7 and decreased EM cells. Thus, although the healthy elderly mount a level of CD4+ T cell responses after vaccination comparable to that observed in younger individuals, they fail to maintain or expand these responses. This failure probably stems from the alteration in the frequency of CM and EM CD4+ T cells in the elderly that is related to alteration in IL-7 levels. These findings raise an important clinical question about whether the vaccination strategy in the elderly should be modified to improve cellular immune responses.
The most common CT finding in patients with SLE and acute abdominal pain is ischemic bowel disease. CT is useful for detecting the primary cause of gastrointestinal symptoms, planning treatment, and monitoring for infarction or perforation.
The N-terminal truncated form of a protein synthesis enzyme, tryptophanyl-tRNA synthetase (mini-WRS), is secreted as an angiostatic ligand. However, the secretion and function of the full-length WRS (FL-WRS) remain unknown. Here, we report that the FL-WRS, but not mini-WRS, is rapidly secreted upon pathogen infection to prime innate immunity. Blood levels of FL-WRS were increased in sepsis patients, but not in those with sterile inflammation. FL-WRS was secreted from monocytes and directly bound to macrophages via a toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to induce phagocytosis and chemokine production. Administration of FL-WRS into Salmonella typhimurium-infected mice reduced the levels of bacteria and improved mouse survival, whereas its titration with the specific antibody aggravated the infection. The N-terminal 154-amino-acid eukaryote-specific peptide of WRS was sufficient to recapitulate FL-WRS activity and its interaction mode with TLR4-MD2 is now suggested. Based on these results, secretion of FL-WRS appears to work as a primary defence system against infection, acting before full activation of innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.