p18 was first identified as a factor associated with a macromolecular tRNA synthetase complex. Here we describe the mouse p18 loss-of-function phenotype and a role for p18 in the DNA damage response. Inactivation of both p18 alleles caused embryonic lethality, while heterozygous mice showed high susceptibility to spontaneous tumors. p18 was induced and translocated to the nucleus in response to DNA damage. Expression of p18 resulted in elevated p53 levels, while p18 depletion blocked p53 induction. p18 directly interacted with ATM/ATR in response to DNA damage. The activity of ATM was dependent on the level of p18, suggesting the requirement of p18 for the activation of ATM. Low p18 expression was frequently observed in different human cancer cell lines and tissues. These results suggest that p18 is a haploinsufficient tumor suppressor and a key factor for ATM/ATR-mediated p53 activation.
Mammalian tRNA synthetases form a macromolecular complex with three nonenzyme factors: p43, p38, and p18. Here we introduced a mutation within the mouse p38 gene to understand its functional significance for the formation of the multi-tRNA synthetase complex. The complex was completely disintegrated by the deficiency of p38. In addition, the protein levels and catalytic activities of the component enzymes and cofactors were severely decreased. A partial truncation of the p38 polypeptide separated the associated components into different subdomains. The mutant mice showed lethality within 2 days of birth. Thus, this work provides the first evidence, to our knowledge, that p38 is essential for the structural integrity of the multi-tRNA synthetase complex and mouse viability.aminoacyl-tRNA synthetase ͉ macromolecular protein complex ͉ gene trap ͉ protein-protein interaction A minoacyl-tRNA synthetases (ARSs) are essential enzymes catalyzing the ligation of their cognate amino acids and tRNAs. Eight different enzymes of higher eukaryotes form a macromolecular complex with three nonsynthetase factors: p43, p38, and p18 (1-3). Although this complex was first reported more than two decades ago, the functional reason for their molecular assembly and the structural organization of the components still remain unknown.Recently, much information has been obtained about the associations and interactions of the component proteins. The assembly of the complex is mediated by heat-shock protein 90 (4) and involves protein-protein interactions via the unique noncatalytic peptides attached to each of the component enzymes (5-7) and their catalytic core domains (8). It was expected that the three associating factors would also contribute to the complex formation. Among the three auxiliary factors, the interaction and function of p43 have been best elucidated. The p43 protein is located in the middle of the complex (9) and is associated with arginyl-tRNA synthetase via its N-terminal region (10). Its C-terminal domain contains an OB-fold, which is responsible for the interaction with tRNA (11, 12) and facilitates the catalytic activity of the bound enzyme (10). Interestingly, p43 is also secreted to work as a proinflammatory cytokine (13,14). The functions of the two other factors are less understood. p38 interacts with many components of the complex (2, 15). To understand the in vivo functional significance of p38 in the formation of the multi-ARS complex, we mutated the p38 structural gene in the mouse and investigated its effects on the cellular stability of the multi-ARS complex and the component proteins. Deletion analyses of p38 were also conducted to map the organization of the component proteins within the complex.
The N-terminal truncated form of a protein synthesis enzyme, tryptophanyl-tRNA synthetase (mini-WRS), is secreted as an angiostatic ligand. However, the secretion and function of the full-length WRS (FL-WRS) remain unknown. Here, we report that the FL-WRS, but not mini-WRS, is rapidly secreted upon pathogen infection to prime innate immunity. Blood levels of FL-WRS were increased in sepsis patients, but not in those with sterile inflammation. FL-WRS was secreted from monocytes and directly bound to macrophages via a toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to induce phagocytosis and chemokine production. Administration of FL-WRS into Salmonella typhimurium-infected mice reduced the levels of bacteria and improved mouse survival, whereas its titration with the specific antibody aggravated the infection. The N-terminal 154-amino-acid eukaryote-specific peptide of WRS was sufficient to recapitulate FL-WRS activity and its interaction mode with TLR4-MD2 is now suggested. Based on these results, secretion of FL-WRS appears to work as a primary defence system against infection, acting before full activation of innate immunity.
Mammalian aminoacyl tRNA synthetases form a macromolecular protein complex with three non-enzymatic cofactors. Among these factors, p43 is also secreted to work as a cytokine on endothelial as well as immune cells. Here we investigated the activity of p43 in angiogenesis and determined the related mediators. It promoted the migration of endothelial cells at low dose but induced their apoptosis at high dose. p43 at low concentration activated extracellular signal-regulating kinase, which resulted in the induction and activation of matrix metalloproteinase 9. In contrast, p43 at high concentration activated Jun N-terminal kinase, which mediated apoptosis of endothelial cells. These results suggest that p43 is a novel cytokine playing a dose-dependent biphasic role in angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.