Utilizing the publicly available neuroimaging database enabled by Alzheimer’s disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu/), we have compared the performance of automated classification algorithms that differentiate AD vs. normal subjects using Positron Emission Tomography (PET) with fluorodeoxyglucose (FDG). General linear model, scaled subprofile modeling and support vector machines were examined. Among the tested classification methods, support vector machine with Iterative Single Data Algorithm produced the best performance, i.e., sensitivity (0.84) × specificity (0.95), by 10-fold cross-validation. We have applied the same classification algorithm to four different datasets from ADNI, Health Science Centre (Winnipeg, Canada), Dong-A University Hospital (Busan, S. Korea) and Asan Medical Centre (Seoul, S. Korea). Our data analyses confirmed that the support vector machine with Iterative Single Data Algorithm showed the best performance in prediction of future development of AD from the prodromal stage (mild cognitive impairment), and that it was also sensitive to other types of dementia such as Parkinson’s Disease Dementia and Dementia with Lewy Bodies, and that perfusion imaging using single photon emission computed tomography may achieve a similar accuracy to that of FDG-PET.
With the increasing demand for large-scale nano- and micropatterns in the field of digital displays, nano- and micropattern replication technology has become a research priority. In this study, a continuous ultraviolet (UV) roll nanoimprinting process using a pattern roll stamper for the replication of large-scale nano- and micropatterns was designed and constructed. Several flexible nano- and micropatterns with large areas were fabricated and analyzed as tests of this continuous UV imprinting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.