The effects of a compound including the secondary metabolites of garlic, propyl thiosulphinate (PTS) and propyl thiosulphinate oxide (PTSO), on the in vitro and in vivo parameters of chicken gut immunity during experimental Eimeria acervulina infection were evaluated. In in vitro assays, the compound comprised of PTSO (67 %) and PTS (33 %) dose-dependently killed invasive E. acervulina sporozoites and stimulated higher spleen cell proliferation. Broiler chickens continuously fed from hatch with PTSO/PTS compound-supplemented diet and orally challenged with live E. acervulina oocysts had increased body weight gain, decreased faecal oocyst excretion and greater E. acervulina profilin antibody responses, compared with chickens fed a non-supplemented diet. Differential gene expression by microarray hybridisation identified 1227 transcripts whose levels were significantly altered in the intestinal lymphocytes of PTSO/PTS-fed birds compared with non-supplemented controls (552 up-regulated, 675 down-regulated). Biological pathway analysis identified the altered transcripts as belonging to the categories 'Disease and Disorder' and 'Physiological System Development and Function'. In the former category, the most significant function identified was 'Inflammatory Response', while the most significant function in the latter category was 'Cardiovascular System Development and Function'. This new information documents the immunologic and genomic changes that occur in chickens following PTSO/PTS dietary supplementation, which are relevant to protective immunity during avian coccidiosis.
The Clostridium-related poultry disease, necrotic enteritis (NE), causes substantial economic losses on a global scale. In the present study, a mixture of two plant-derived phytonutrients, Capsicum oleoresin and turmeric oleoresin (XT), was evaluated for its effects on local and systemic immune responses using a co-infection model of experimental NE in commercial broilers. Chickens were fed from hatch with a diet supplemented with XT, or with a non-supplemented control diet, and either uninfected or orally challenged with virulent Eimeria maxima oocysts at 14 d and Clostridium perfringens at 18 d of age. Parameters of protective immunity were as follows: (1) body weight; (2) gut lesions; (3) serum levels of C. perfringens a-toxin and NE B-like (NetB) toxin; (4) serum levels of antibodies to a-toxin and NetB toxin; (5) levels of gene transcripts encoding pro-inflammatory cytokines and chemokines in the intestine and spleen. Infected chickens fed the XT-supplemented diet had increased body weight and reduced gut lesion scores compared with infected birds given the non-supplemented diet. The XT-fed group also displayed decreased serum a-toxin levels and reduced intestinal IL-8, lipopolysaccharide-induced TNF-a factor (LITAF), IL-17A and IL-17F mRNA levels, while cytokine/chemokine levels in splenocytes increased in the XT-fed group, compared with the animals fed the control diet. In conclusion, the present study documents the molecular and cellular immune changes following dietary supplementation with extracts of Capsicum and turmeric that may be relevant to protective immunity against avian NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.