Accurate music tag classification of music clips has been attracting great attention recently, because it allows one to provide various music excerpts, including unpopular ones, to users based on the clips' acoustic similarities. Given a user's preferred music, acoustic features are extracted and then fed into the classifier, which outputs the related tag to recommend new music. Furthermore, the accuracy of the tag classifiers can be improved by selecting the best feature subset based on the domain to which the tag belongs. However, recent studies have struggled to evaluate the superiority of various classifiers because they utilize different feature extractors. In this study, to conduct a direct comparison of existing methods of classification, we create 20 music datasets with the same acoustic feature structure. In addition, we propose an effective evolutionary feature selection algorithm to evaluate the effectiveness of feature selection for tag classification. Our experiments demonstrate that the proposed method improves the accuracy of tag classification, and the analysis with multiple datasets provides valuable insights, such as the important features for general music tag classification in target domains.INDEX TERMS Music tag classification, feature selection, machine learning, evolutionary algorithm.
Background: It is challenging to predict retear after arthroscopic rotator cuff repair (ARCR). The usefulness of arthroscopic intraoperative images as predictors of the ARCR prognosis has not been analyzed. Purpose: To evaluate the usefulness of arthroscopic images for the prediction of retear after ARCR using deep learning (DL) algorithms. Study Design: Cohort study (Diagnosis); Level of evidence, 2. Methods: In total, 1394 arthroscopic intraoperative images were retrospectively obtained from 580 patients. Repaired tendon integrity was evaluated using magnetic resonance imaging performed within 2 years after surgery. Images obtained immediately after ARCR were included. We used 3 DL architectures to predict retear based on arthroscopic images. Three pretrained DL algorithms (VGG16, DenseNet, and Xception) were used for transfer learning. Training and test sets were split into 8:2. Threefold stratified validation was used to fine-tune the hyperparameters using the training data set. The validation results of each fold were evaluated. The performance of each model in the test set was evaluated in terms of accuracy, area under the receiver operating characteristic curve (AUC), F1-score, sensitivity, and specificity. Results: In total, 1138 and 256 arthroscopic images were obtained from 514 patients and 66 patients in the nonretear and retear groups, respectively. The mean validation accuracy of each model was 83% for VGG16, 89% for Xception, and 91% for DenseNet. The accuracy for the test set was 76% for VGG16, 87% for Xception, and 91% for DenseNet. The AUC was highest for DenseNet (0.92); it was 0.83 for VGG16 and 0.91 for Xception. For the test set, the specificity and sensitivity were 0.93 and 0.84 for DenseNet, 0.89 and 0.84 for Xception, and 0.70 and 0.80 for VGG16, respectively. Conclusion: The application of DL algorithms to intraoperative arthroscopic images has demonstrated a high level of accuracy in predicting retear occurrences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.