The objective of this study was to investigate the effects of replacing sucrose with sugar alcohols (sorbitol, glycerol and xylitol) on the quality properties of semi-dried jerky. Total 7 treatments of jerkies were prepared as follows: control with sucrose, and treatments with 2.5 and 5.0% of sucrose replaced by each sugar alcohol, respectively. Drying yield, pH, water activity, moisture content, shear force, myofibrillar fragmentation index (MFI), 2-thiobarbituric acid reactive substance (TBARS) value, sugar content, and sensory evaluation were evaluated. Xylitol slightly decreased the pH when compared to the other sugar alcohols (p>0.05). The water activity of the semi-dried jerky was significantly reduced by treatment with glycerol and xylitol (p<0.05). The moisture content of semi-dried jerky containing various sugar alcohols was significantly higher than that of the control (p<0.05), while replacing sucrose with glycerol yielded the highest moisture content. The shear force of semi-dried jerky containing sugar alcohols was not significantly different for the sorbitol and glycerol treatments, but that replacing sucrose with 5.0% xylitol demonstrated the lowest shear force (p<0.05). The TBARS values of semi-dried jerkies with sugar alcohols were lower than the control (p<0.05). The sugar content of the semi-dried jerkies containing sorbitol and glycerol were lower than the control and xylitol treatment (p<0.05). In comparison with the control, the 5.0% xylitol treatment was found to be significantly different in the sensory evaluation (p<0.05). In conclusion, semi-dried jerky made by replacement with sugar alcohols improved the quality characteristics, while xylitol has applicability in manufacturing meat products.
This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters.
The brown soybean extract (BE, extracted by distilled water, 50%, 75%, and 95% ethanol) were analyzed for their total phenol, flavonoid, anthocyanin content, and DPPH radical-scavenging activity to determine antioxidant activities. Brown soybean extract with 75% ethanol showed significantly higher DPPH radical scavenging activity, total phenol and anthocyanin content compared to the other treatments (p<0.05). Then, brown soybean extract with 75% ethanol was applied to pork patties at different concentration (0.05%, 0.1%, and 0.2%) and lipid oxidation was evaluated during 15 d of refrigerated storage. Addition of BE significantly increased redness and pH values, respectively (p<0.05). Moreover, TBARS value of pork patties decreased significantly (p<0.05) as BE concentration increased. In sensory evaluation, pork patties with 0.1% BE had significantly higher score than other treatments in flavor and overall acceptability (p<0.05). Consequently, these results indicate that 0.1% BE could be an effective natural antioxidant to inhibit lipid oxidation in pork patties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.