The biological efficacy of vitamin C depends on its redox abilities as given by the relations between ascorbic acid, semidehydroascorbic acid, and dehydroascorbic acid. It is shown by means of proton magnetic resonance spectroscopy that the enzymatic (by ascorbate oxidase) as well as non-enzymatic (by iodine) oxidation of ascorbic acid is, in principle, reversible despite the hydration and structural changes during the formation of dehydroascorbic acid. The strong redox activity of semidehydroascorbic acid which results in a fast disproportionation to ascorbic acid and dehydroascorbic acid is inferred from an inversion of the electrochemical potentials of the vitamin C redox system. The capacity of this is maintained by a fast reduction of dehydro ascorbic acid e.g. by reduced glutathione, preventing its delactonization and further degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.