ObjectiveTo evaluate the effects of extracorporeal shockwave therapy (ESWT) on pain, function, and ultrasonographic features of chronic stroke patients with knee osteoarthritis (OA).MethodsA total of 18 chronic stroke patients (33 knee joints) with unilateral or bilateral knee OA (Kellgren-Lawrence grade ≥1) were enrolled in this study. The patients were randomly allocated to an experimental group receiving ESWT (n=9) or a control group receiving sham ESWT (n=9). For the ESWT group, patients received 1,000 pulses weekly for 3 weeks, totaling to an energy dose of 0.05 mJ/mm2 on the proximal medial tibia of the affected knee. The assessments were performed before the treatment, immediately after the first treatment, and 1 week after the last treatment using the following: the visual analog scale (VAS) for pain; patient perception of the clinical severity of OA; the Korean version of Modified Barthel Index (ambulation and chair/bed transfer); the Functional Independence Measure scale (FIM; bed/chair/wheelchair transfer, toilet transfer, walking, and stairs); and ultrasonographic features (articular cartilage thickness, Doppler activity, and joint effusion height).ResultsThe experimental group showed a significant improvement in VAS score (4.50±1.87 to 2.71±1.38) and patient perception of the clinical severity of OA (1.87±0.83 to 2.75±0.46). The bed/chair/wheelchair transfer components of the FIM score also improved significantly (4.12±1.55 to 4.62±1.30). In terms of the ultrasonographic features, increased Doppler activity was observed in the medial knee in the experimental group immediately following ESWT.ConclusionIt is suggested that ESWT may reduce pain and improve function in chronic stroke patients with OA, and may increase vascular activity at the target site.
A remarkably sensitive and visible-blind ultraviolet photodetector based on ZnO nanorods is demonstrated through ZnO surface conversion into ZIF-8.
Over the past few years, considerable attention has been paid to high‐Ni layered cathode materials for high‐energy Li‐ion batteries (LIBs); however, these materials intrinsically have low thermal stability. Alternatively, the high‐voltage operation of low‐Ni materials may be one of the attractive ways to provide various options for designing advanced LIBs. Here, the structural, electrochemical, and thermal properties of LiNi0.5Co0.2Mn0.3O2 (NCM523) and LiNi0.80Co0.15Al0.05O2 (NCA) are investigated by setting up the same initial discharge capacity. In the high‐voltage region, NCM523 exhibits less anisotropic lattice distortion and maintains wider Li‐ion channels than NCA. After long‐term cycling, reduced Ni ions are observed near the cracks, grain boundaries, or between the primary particles in both materials, however, the chemical states of the Ni ions in NCA are more heterogeneously distributed, and the particle pulverization and microcrack propagation are more prominent; the structural integrity and electrochemical properties of the material are degraded. Moreover, the cyclability and thermal stability of NCM523 are superior to those of NCA, despite the higher charge cut‐off voltage of the former. Therefore, the utilization of low‐Ni layered cathode materials operated at high voltage is a strategic approach to expand the design factors of advanced LIBs.
RSK2 is a downstream signaling protein of ERK1 and ERK2 and plays a key role in physiological homeostasis. For this reason, RSK2 is a highly conserved protein among the p90RSK family members. In its location in the signaling pathway, RSK2 is a kinase just upstream of transcription and epigenetic factors, and a few kinases involved in cell cycle regulation and protein synthesis. Moreover, activation of RSK2 by growth factors is directly involved in cell proliferation, anchorage-independent cell transformation and cancer development. Direct evidences regarding the etiological roles of RSK2 in cancer development in humans have been published by our research group illustrating that elevated total- and phospho-RSK2 protein levels mediated by ERK1 and ERK2 are higher in skin cancer tissues compared to normal skin tissues. Notably, it has been shown that RSK2 ectopic expression in JB6 Cl41 cells induces cell proliferation and anchorage- independent cell transformation. Importantly, knockdown of RSK2 suppresses Ras-mediated foci formation and anchorage-independent colony growth of cancer cells. Kaempferol is a one of the natural compounds showing selectivity in inhibiting RSK2 activity in epidermal growth factor-induced G1/S cell cycle transition and cell transformation. Thus, ERKs/RSK2 signaling axis is an important target signaling molecule in chemoprevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.