Fibrin glue has been widely investigated as a cell delivery vehicle for improving the therapeutic effects of mesenchymal stem cells (MSCs). Implanted MSCs produce their therapeutic effects by secreting paracrine factors and by replacing damaged tissues after differentiation. While the influence of fibrin glue on the differentiation potential of MSCs has been well documented, its effect on paracrine function of MSCs is largely unknown. Herein we investigated the influence of fibrin glue on the paracrine effects of MSCs. MSCs were isolated from human adipose tissue. The effects of fibrin glue on survival, migration, secretion of growth factors, and immune suppression of MSCs were investigated in vitro. MSCs in fibrin glue survived and secreted growth factors such as the vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) over 14 days. VEGF and immune modulators, including the transforming growth factor (TGF)-b1 and prostaglandin E 2 , secreted from MSCs in fibrin glue significantly increased under inflammatory conditions. Thus, MSCs in fibrin glue effectively suppressed immune reactions. In addition, fibrin glue protected the MSCs from oxidative stress and prevented human dermal fibroblast death induced by exposure to extreme stress. In contrast, MSCs within fibrin glue hardly migrated. These results suggest that fibrin glue may sustain survival of implanted MSCs and their paracrine function. Our results provide a mechanistic data to allow further development of MSCs with fibrin glue as a clinical treatment.
The use of autologous differentiated adipocytes can be a safe and effective treatment for soft tissue defects, with relatively long-term maintenance of volume. The authors have indicated no significant interest with commercial supporters.
We recently reported that autologous adipogenic differentiated adipose-derived stem cells (ASCs) can potentially be used as an effective and safe therapy for soft-tissue regeneration. In the present study, we investigated whether adipogenic differentiated ASCs can be used for allogenic applications to enlarge their therapeutic use. The allogenic immune response of adipogenic differentiated ASCs was investigated by flow cytometry and mixed lymphocyte culture. To determine whether adipogenic differentiated ASCs can form new adipose tissue without immune rejection, these cells were implanted subcutaneously into allo- or xenogenic recipient mice. In addition, the safety of the allogenic implantation of adipogenic differentiated ASCs was explored in a phase I clinical study. Adipogenic differentiated ASCs do not express major histocompatibility complex (MHC) class II molecules and costimulatory molecules, and the expression levels of MHC class I decreased after differentiation. In addition, these cells do not elicit an immune response against MHC-mismatched allogenic lymphocytes and formed new adipose tissue without immune rejection in the subcutaneous region of MHC-mismatched mice. Moreover, these cells did not induce clinically significant local and systemic immune responses or adverse events in the subcutaneous region of donor-independent healthy subjects. These results suggest that adipogenic differentiated ASCs can be used as a "universal donor" for soft-tissue engineering in MHC-mismatched recipients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.