Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.
Benthic diatoms isolated from tidal flats in the west coast of Korea were identified through both traditional morphological method and molecular phylogenetic method for methodological comparison. For the molecular phylogenetic analyses, we sequenced the 18S rRNA and the ribulose bisphosphate carboxylase large subunit coding gene, rbcL. Further, the comparative analysis allowed for the assessment of the suitability as a genetic marker for identification of closely related benthic diatom species and as potential barcode gene. Based on the traditional morphological identification system, the 61 isolated strains were classified into 52 previously known taxa from 13 genera. However, 17 strains could not be classified as known species by morphological analyses, suggesting a hidden diversity of benthic diatoms. The Blast search on NCBI’s Genebank indicated that the reference sequences for most of the species were absent for the benthic diatoms. Of the two genetic markers, the rbcL genes were more divergent than the 18S rRNA genes. Furthermore, a long branch attraction artefact was found in the 18S rRNA phylogeny. These results suggest that the rbcL gene is a more appropriate genetic marker for identification and classification of benthic diatoms. Considering their high diversity and simple shapes, and thus the difficulty associated with morphological classification of benthic diatoms, a molecular approach could provide a relatively easy and reliable classification system. However, this study suggests that more effort should be made to construct a reliable database containing polyphasic taxonomic data for diatom classification.
Photosynthetic picoeukaryotes (PPEs) are major oceanic primary producers. However, the diversity of such communities remains poorly understood, especially in the northwestern (NW) Pacific. We investigated the abundance and diversity of PPEs, and recorded environmental variables, along a transect from the coast to the open Pacific Ocean. High-throughput tag sequencing (using the MiSeq system) revealed the diversity of plastid 16S rRNA genes. The dominant PPEs changed at the class level along the transect. Prymnesiophyceae were the only dominant PPEs in the warm pool of the NW Pacific, but Mamiellophyceae dominated in coastal waters of the East China Sea. Phylogenetically, most Prymnesiophyceae sequences could not be resolved at lower taxonomic levels because no close relatives have been cultured. Within the Mamiellophyceae, the genera Micromonas and Ostreococcus dominated in marginal coastal areas affected by open water, whereas Bathycoccus dominated in the lower euphotic depths of oligotrophic open waters. Cryptophyceae and Phaeocystis (of the Prymnesiophyceae) dominated in areas affected principally by coastal water. We also defined the biogeographical distributions of Chrysophyceae, prasinophytes, Bacillariophyceaea and Pelagophyceae. These distributions were influenced by temperature, salinity and chlorophyll a and nutrient concentrations.
The complete mitochondrial DNA of tube-dwelling diatom, Berkeleya fennica was sequenced and characterized. The circular mitogenome contains 63 genes in 35,509 bp (29.7% GC), including 36 protein-coding, 25 tRNA, 2 rRNA genes. Most of the protein-coding (27) genes have usual ATG start codon, except 9 genes such as ATA for rps8; ATC for rps14; ATT for rps12 and orf51; GTG for nad5; TTA for cox3, nad4 and orf147; and TTG for cob. The nad11 and rrs are the only interrupted genes in the mitogenome. Gene content and synteny of B. fennica are very similar to Phaeodactylum tricoruntum (NC_016739). Absence of repeat region in B. fennica resulted in mitogenome size difference to P. tricoruntum. A new mitogenome will provide useful information for mitochondrial genome diversity and evolution of the diatoms.
The complete mitochondrial DNA of common planktonic diatom, Skeletonema marinoi JK029 was sequenced and characterized. The circular mitogenome contains 62 genes in 38 515 bp (29.7% GC), including 35 protein-coding, 2 rRNA, and 25 tRNA genes. Total 80% of protein-coding genes have usual ATG start codon and 20% have alternative start codons. The GC content of tRNA genes (39.8%) is relatively higher than those of the rRNA (32.9%) and CDS (29.3%). There are four cases of gene overlapping between neighboring genes, i.e., rrs-trnM, rps2-rps4, nad1-tatC, and rps11-trnY. Newly determined mitogenome of S. marinoi was compared with available seven diatoms and eight stramenopiles by using the maximum-likelihood analysis. The 34-CDS concatenated data (8528 amino acids) support the monophyly of Bacillariophyta. However, mitogenome data showed different higher class-levels clustering with previous study. These results suggested that additional mitogenome data will provide useful information for mitochondrial genome diversity and evolution of the diatoms and stramenopiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.