The Image Biomarker Standardization Initiative validated consensus-based reference values for 169 radiomics features, thus enabling calibration and verification of radiomics software. Key results: • research teams found agreement for calculation of 169 radiomics features derived from a digital phantom and a human lung cancer on CT scan. • Of these 169 candidate radiomics features, good to excellent reproducibility was achieved for 167 radiomics features using MRI, 18F-FDG PET and CT images obtained in 51 patients with soft-tissue sarcoma.
We explored the clinical and pathological impact of epidermal growth factor receptor (EGFR) extracellular domain missense mutations. Retrospective assessment of 260 de novo glioblastoma patients revealed a significant reduction in overall survival of patients having tumors with EGFR mutations at alanine 289 (EGFR). Quantitative multi-parametric magnetic resonance imaging analyses indicated increased tumor invasion for EGFR mutants, corroborated in mice bearing intracranial tumors expressing EGFR and dependent on ERK-mediated expression of matrix metalloproteinase-1. EGFR tumor growth was attenuated with an antibody against a cryptic epitope, based on in silico simulation. The findings of this study indicate a highly invasive phenotype associated with the EGFR mutation in glioblastoma, postulating EGFR as a molecular marker for responsiveness to therapy with EGFR-targeting antibodies.
Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a direct impact on the quality of all subsequent processing and analyses steps. It is also a key requirement in multi-institutional collaborations to comply with privacy-preserving regulations. Existing automated methods, including Deep Learning (DL) based methods that have obtained state-of-the-art results in recent years, have primarily targeted brain extraction without considering pathologically-affected brains. Accordingly, they perform sub-optimally when applied on magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In this study, we present a comprehensive performance evaluation of recent deep learning architectures for brain extraction, training models on mpMRI scans of pathologically-affected brains, with a particular focus on seeking a practically-applicable, low computational footprint approach, generalizable across multiple institutions, further facilitating collaborations. We identified a large retrospective multi-institutional dataset of
n
= 3340 mpMRI brain tumor scans, with manually-inspected and approved gold-standard segmentations, acquired during standard clinical practice under varying acquisition protocols, both from private institutional data and public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further introduce and evaluate a novel “modality-agnostic training” technique that can be applied using any available modality, without need for model retraining. Our results indicate that the modality-agnostic approach
1
obtains accurate results, providing a generic and practical tool for brain extraction on scans with brain tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.