A new liquid rice hull smoke extract with a smoky aroma and sugar-like odor prepared by pyrolysis of rice hulls followed by liquefaction of the resulting smoke contained 161 compounds characterized by GC/MS. Antioxidative, antiallergic, and anti-inflammatory activities of the extract were assessed in vitro and in vivo. At pH 5, the extract inhibited 1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and suppressed nitric oxide (NO) and β-hexosaminidase releases from lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophage leukemia cells and ionophore A23187-stimulated RBL-2H3 rat basophilic cells without significant cytotoxicity. 12-O-Tetradecanolylphorbol-13-acetate (TPA) was applied to the ears of CD-1 mice to induce inflammation (edema), which was accompanied by increases in a series of biomarkers. Topical application of 1% of the extract as well as feeding mice a standard diet with 1% extract for two weeks significantly reduced the expression of biomarkers associated with the TPA-induced inflammation. These include tumor necrosis factor-α (TNF-α), IL-1β, interleukin-1β (IL-1β), interleukin-6 (IL-6), leukotriene B(4) (LTB(4)), prostaglandin E(2) (PGE(2)), myeloperoxidase (MPO). These in vitro and in vivo findings demonstrate the potential value of rice hull smoke extract derived from a major agricultural byproduct to serve as a new biomaterial for the improvement of food quality and safety and the environment.
Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol.
We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran extract on the following biomarkers: pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), eicosanoids leukotriene B4 (LTB4), and prostaglandin E2 (PGE2). Topical application of TPA to ears of CD-1 mice induced inflammation accompanied with substantial increase in TNF-α, IL-1β, IL-6, LTB4, and PGE2 levels and an elevation in intercellular adhesion molecule-1 (ICAM-1) gene expressions in ear skin tissues. Intraperitoneal injection of black rice bran extract prior to TPA application in mice significantly suppressed TPA-induced inflammation (edema) and induced a marked decrease in the production of TNF-α, IL-1β, IL-6, and LTB4. Feeding mice a standard diet with added 10% black rice bran also significantly suppressed DNFB-induced allergic contact dermatitis on the skin of the mice. By contrast, a nonpigmented brown rice bran extract did not inhibit the TPA-induced edema and failed to significantly suppress production of pro-inflammatory biomarkers (mediators). These in vivo findings further demonstrate the potential value of black rice bran as an anti-inflammatory and antiallergic food ingredient and possibly also as a therapeutic agent for the treatment and prevention of diseases associated with chronic inflammation.
Anthraquinone (9,10-anthraquinone) and several hydroxy derivatives, including purpurin (1,2,4-trihydroxyanthraquinone), anthrarufin (1,5-dihydroxyanthraquinone), and chrysazin (1,8-dihydroxyanthraquinone), were evaluated for antioxidative and anti-inflammatory activities in chemical assays and mammalian cells (murine macrophage RAW 264.7 cells). Several tests were used to assess their activities: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical; ABTS radical cation; hydrogen peroxide scavenging; reduction of potassium ferricyanide; chelation of ferrous ions; inhibition of lipid peroxidation; inhibition of nitric oxide generation; scavenging of the intracellular hydroxyl radical; expression of NLRP3 polypeptide for inflammasome assembly; and quantitation of proinflammatory cytokine interleukin 1β (IL-1β) for inflammasome activation. The results show that purpurin, from the root of the madder plant (Rubia tinctorum L.), exhibited the highest antioxidative activity in both chemical and cultured cell antioxidant assays. The antioxidative activities of the other three anthraquinones were lower than that of purpurin. In addition, purpurin could down-regulate NLRP3 inflammasome assembly and activation, suggesting that it might protect foods against oxidative damage and prevent in vivo oxidative stress and inflammation. Structure-activity relationships and the significance of the results for food quality and human health are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.