We discuss the implications of approximate particle-hole symmetry in a half-filled Landau level in which a paired quantum Hall state forms. We note that the Pfaffian state is not particle-hole symmetric. Therefore, in the limit of vanishing Landau level mixing, in which particle-hole transformation is an exact symmetry, the Pfaffian spontaneously breaks this symmetry. There is a particle-hole conjugate state, which we call the anti-Pfaffian, which is degenerate with the Pfaffian in this limit. We observe that strong Landau level mixing should favor the Pfaffian, but it is an open problem which state is favored for the moderate Landau level mixing which is present in experiments. We discuss the bulk and edge physics of the anti-Pfaffian. We analyze a simplified model in which transitions between analogs of the two states can be studied in detail. Finally, we discuss experimental implications.
Particle focusing in planar geometries is essentially required in order to develop cost-effective lab-on-a-chips, such as cell counting and point-of-care (POC) devices. In this study, a novel method for sheathless particle focusing, called "Elasto-Inertial Particle Focusing", was demonstrated in a straight microchannel. The particles were notably aligned along the centerline of the straight channel under a pressure-driven flow without any additional external force or apparatus after the addition of an elasticity enhancer: PEO (poly(ethylene oxide)) (∼O(100) ppm). As theoretically predicted (elasticity number: El≈O(100)), multiple equilibrium positions (centerline and corners) were observed for the viscoelastic flow without inertia, whereas three-dimensional particle focusing only occurred when neither the elasticity nor the inertia was negligible. Therefore, the three-dimensional particle focusing mechanism was attributed to the synergetic combination of the elasticity and the inertia (elasticity number: El≈O(1-10)). Furthermore, from the size dependence of the elastic force upon particles, we demonstrated that a mixture of 5.9 and 2.4 µm particles was separated at the exit of the channel in viscoelastic flows. We expect that this method can contribute to develop the miniaturized flow cytometry and microdevices for cell and particle manipulation.
Using the AdS/CFT correspondence, we calculate a fermionic spectral function in a 2+1 dimensional non-relativistic quantum field theory which is dual to a gravitational theory in the AdS 4 background with a charged black hole. The spectral function shows no quasiparticle peak but the Fermi surface is still well defined. Interestingly, all momentum points inside the Fermi surface are critical and the gapless modes are defined in a critical Fermi ball in the momentum space.
We study the low-energy effective theory for a non-Fermi-liquid state in 2 + 1 dimensions, where a transverse U͑1͒ gauge field is coupled with a patch of Fermi surface with N flavors of fermion in the large N limit. In the low-energy limit, quantum corrections are classified according to the genus of the two-dimensional surface on which Feynman diagrams can be drawn without a crossing in a double line representation and all planar diagrams are important in the leading order. The emerging theory has the similar structure to the fourdimensional SU͑N͒ gauge theory in the large N limit. Because of strong quantum fluctuations caused by the abundant low-energy excitations near the Fermi surface, low-energy fermions remain strongly coupled even in the large N limit. As a result, there are infinitely many quantum corrections that contribute to the leading frequency dependence of the Green's function of fermion on the Fermi surface. On the contrary, the boson self-energy is not modified beyond the one-loop level and the theory is stable in the large N limit. The nonperturbative nature of the theory also shows up in correlation functions of gauge-invariant operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.