The modification effect of Al-5Ti-1B master alloy on eutectic Mg2Si in Al-Zn-Si-Mg system alloy was investigated in this study. The microstructure shows that an extreme effect can be achieved after the addition of Al-5Ti-1B master alloy into the base alloy. The morphology of eutectic Mg2Si changed from Chinese script to fine polygonal shape, and the size was refined from over 50 μm to under 10 μm. This morphology change is believed to be due to TiB2 particles existing in Al-5Ti-1B master alloy, and the presence of TiB2 particles inside the modified Mg2Si was confirmed by scanning electron microscope/energy dispersive spectrometer (SEM/EDS) observation. The mechanical properties were also improved by the addition of Al-5Ti-1B master alloys. This study investigated the reason for the improvement in mechanical properties with the modification of the microstructure.
Grain refinement of magnesium (Mg) alloys has been a major research topic over the past decades as one of the effective approaches to increase their strength and ductility simultaneously. In this study, a brief review of the grain refinement of aluminum-bearing Mg alloys is included to provide an in-depth understanding of the detailed mechanisms of grain refinement of Mg alloys. Additionally, the effect of melt superheating on the grain refining of Mg–Al-based alloys has been investigated. It was confirmed that melt superheating caused a significant grain refining effect in the commercial purity (CP) of AZ91 alloy (0.25% Mn). Undercooling of 1.3 °C was observed before superheating and was noticeably reduced after the superheating process. A vacuum filtering experiment was conducted, which involves filtering the melts using fine metal porous filters to separate the particles in the melts. It was observed that a large amount of Al8Mn5 particles were generated in the commercial purity AZ91 alloy by the superheating process. However, because of the poor crystallographic matching between Al8Mn5 and Mg, Al8Mn5 was not considered the nucleation site for Mg grains. A master alloy containing ε-AlMn particles, which are in good crystallographic matching with Mg, was added, and it was found that the grain size of the commercial-grade AZ91 alloy was reduced. Therefore, it is suggested that Al8Mn5 particles, existing as a solid phase in the molten metal of the commercial AZ91 alloy could be transformed into ε-AlMn particles by the superheating process, and these particles can be effective nucleation sites for Mg grains. The transformation of Al8Mn5 into ε-AlMn is considered the main mechanism of grain refinement of the commercial purity of AZ91 alloy by superheating. Notably, the effect of grain refinement by superheating was not observed in the high-purity (HP) AZ91 alloy (0.006% Mn) because Al–Mn particles were likely not formed due to a very small quantity of manganese.
In this study, the tendency of having different grain structures depending on the impurity levels in AZ91 alloys was investigated. Two types of AZ91 alloys were analyzed: commercial-purity AZ91 and high-purity AZ91. The average grain size of the commercial-purity AZ91 alloy and high-purity AZ91 is 320 µm and 90 µm, respectively. Thermal analysis revealed negligible undercooling in the high-purity AZ91 alloy, while undercooling of 1.3 °C was observed in the commercial-purity AZ91 alloy. A CS analyzer was employed to precisely analyze the carbon composition of both alloys. The carbon content of the high-purity AZ91 alloy was found to be 197 ppm, while the commercial-purity AZ91 alloy contained 104 ppm, indicating a difference of approximately 2 times. The higher carbon content in the high-purity AZ91 alloy is believed to be due to the use of high-purity pure Mg in its production (the carbon content of high-purity pure Mg is 251 ppm). To simulate the vacuum distillation process commonly used in the production of high-purity Mg ingots, experiments were conducted to investigate the reaction of carbon with oxygen to produce CO and CO2. XPS analysis and simulation results for activities confirmed the formation of CO and CO2 during the vacuum distillation process. It could be speculated that the carbon sources in the high-purity Mg ingot provide Al-C particles, which act as nucleants for Mg grains in the high-purity AZ91 alloy. Thus, it can be considered the main reason that high-purity AZ91 alloys have a finer grain structure than that of commercial-purity AZ91 alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.