Taking plasma-enhanced chemical vapor deposited porous SiOCH (p-SiOCH) and octadecyltrichlorosilane (OTS) as model cases, this study elucidates the chemical reaction pathways for alkyl-based self-assembled monolayers (SAMs) on porous carbon-doped organosilica films under N(2)-H(2) vacuum plasma illumination. In contrast to previous findings that carboxylic groups are found in alkyl-based SAMs only by exposure to oxygen-based plasma, this study discovers that, upon exposure to reductive nitrogen-based vacuum plasma, surface carboxylic functional groups can be instantly formed on OTS-coated p-SiOCH films. Particular attention is given to developing a multisurface modification process, starting with the modification of p-SiOCH films by N(2)-H(2) plasma and continuing with SAM deposition and plasma patterning; this ultimately leads to site-selective seeding for the spatially controlled fabrication of Cu-wire metallization by electroless deposition. Plasma diagnosis and X-ray near-edge absorption and Fourier transform infrared spectroscopies show that, by adequately controlling the plasma parameters, the bulk of the p-SiOCH films are free from plasma damage (in terms of degradation in bonding structures and electrical properties); the formation of the seed-trapping carboxylic functional groups on the surface, the key factor for the validity of this new seeding process, is due to a water-mediated chemical oxygenation route.
In this work, an attempt to fabricate nanostructured metallization patterns on SiO(2) dielectric layers is made by using plasma-patterned self-assembled monolayers (SAMs), in conjunction with a novel aqueous seeding and electroless process. Taking octadecyltrichlorosilane (OTS) as a test material, the authors demonstrate that optimizing the N(2)-H(2) plasma conditions leads to the successive conversion of the topmost aliphatic chains of alkyl SAMs to carboxyl (COOH) and hydroxyl (C-OH) functional groups, which was previously found in alkyl SAMs only by exposure to "oxygen-based" plasma. Further modifying the plasma-exposed (either COOH or C-OH terminated) regions with an aqueous solution (SC-1) creates surface functionalities that are viable for site-controlled metallic seeding (e.g., Co or Ni) with an adsorption selectivity of greater than 1000:1. Neither the combination of costly PdCl(2) and complex additives nor the demerits of the associated aqueous chemistry (e.g., seed agglomeration and seed sparseness) are involved. Therefore, the seed particles are only 3 nm in size. Simultaneously, there are sufficient particle densities previously unattainable for electroless deposition to trigger highly resolved Cu metallization patterns with a film thickness of less than 10 nm. The formation of the seed-adsorbing sites is discussed, based on a plasma-dissociated, water-mediated chemical oxidation route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.