Radix Polygalae (the root of Polygala tenuifolia) is a herb widely used in traditional Asian medicine that is thought to exert a variety of neuropsychiatric effects. Radix Polygalae extract can protect against N-methyl D-aspartate (NMDA) neurotoxicity and induce brain-derived neurotrophic factor (BDNF) expression, suggesting modulatory roles at glutamatergic synapses and possible antidepressant action. In accordance with this hypothesis, Radix Polygalae extract demonstrated antidepressant-like effects in 8-week-old male C57Bl/6 mice by decreasing behavioral despair in the forced swim and tail suspension tasks and increasing hedonic-like behavior in the female urine sniffing test 30 minutes after a single oral administration of 0.1 mg/kg. Reduced latency to acquire a food pellet in the novely suppressed feeding paradigm, without change in anxiety-like behaviors suggested a rapid-onset nature of the antidepressant-like effect. In addition, it decreased the number of failed escapes in the learned helplessness paradigm after two oral administrations 24 hours and 30 minutes before the first test. Finally, it reversed anhedonia as measured by saccharin preference in mice exposed to the chronic stress model after two administrations of 0.1 mg/kg, in contrast to the repeated administration generally needed for similar effect by monoamergic antidepressants. Immobility reduction in tail suspension task was blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX, a pattern previously demonstrated by ketamine and other ketamine-like rapid-onset antidepressants. Also similarly to ketamine, Radix Polygalae appeared to acutely decrease phosphorylation of GluR1 serine-845 in the hippocampus while leaving the phosphorylation of hippocampal mTOR serine 2448 unchanged. These findings serve as preclinical evidence that Radix Polygalae extract exerts rapid-onset antidepressant effects by modulating glutamatergic synapses in critical brain circuits of depression and may be worthy of further evaluation as a safe substitute to other rapid-onset antidepressants known to have unacceptable side effects.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.