Using the abandoned agricultural by-product corncobs, the most commonly used methylene blue (MB) dyestuffs were removed. This experiment is very meaningful because it is the recycling of resources and the use of environmentally friendly adsorbents. According to the Hauser ratio and porosity analysis, the corncob has a good flow ability of the adsorbent material and many pores, which is very advantageous for MB adsorption. As a result of the experiment, MB concentration of less than 0.005 g/L was very efficiently removed with 10 g/L of bioadsorbent corncob and the maximum adsorption capacity of corncob for MB dyes was obtained at 417.1 mg/g. In addition, adsorption process of MB onto corncob was a physical process according to adsorption energy analysis. Corncob can efficiently and environmentally remove MB in aqueous solution, and is very cost effective and can recycle the abandoned resources.
The growth of the algae Chlorella vulgaris, Botryococcus braunii and Scenedesmus sp. under mixotrophic conditions in the presence of different concentrations of crude glycerol was evaluated with the objective of increasing the biomass growth and algal oil content. A high biomass concentration was characteristic of these strains when grown on crude glycerol compared to autotrophic growth, and 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAGs in the algae biomass was obtained in the 5 g/L glycerol growth medium. The fatty acid profiles of the oil for the cultures met the necessary requirements and the strains are promising resources for biofuel production.
In this study, hybrid beads, which are made by mixing persimmon leaf and chitosan, was used to remove Pb(II) and Cd(II) from aqueous solution. According to the Fourier transform infrared spectrometry (FT-IR) analysis, the hybrid bead has a structure that enables the easy adsorption of heavy metals because it has carboxylic, carbonyl groups, O-H carboxylic acid, and bonded -OH groups. The adsorption of Pb(II) and Cd(II) by hybrid beads was more suitable with the Langmuir isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Pb(II) and Cd(II) was determined to be 278.68 mg/g and 87.91 mg/g, respectively. Furthermore, the adsorption removal process of Pb(II) and Cd(II) using hybrid beads is a spontaneous exothermic reaction and the affinity of the adsorbed material for the adsorbent is excellent. Hybrid beads are inexpensive, have a high removal efficiency of heavy metals, and are environmentally friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.