Diagnostic performance of unenhanced CT for quantitative assessment of macrovesicular steatosis is not clinically acceptable. Unenhanced CT, however, provides high performance in qualitative diagnosis of macrovesicular steatosis of 30% or greater.
Accuracy of MRCP is comparable with that of ERCP. Regardless of modality, a lengthy segment of extrahepatic bile duct stricture with irregular margin and asymmetric narrowing suggests cholangiocarcinoma, and a short segment with regular margin and symmetric narrowing suggests benign cause.
In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.
BackgroundMucopolysaccharidosis II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disorder caused by the deficiency of iduronate-2-sulfatase (IDS). In affected patients, glycosaminoglycan (GAG) accumulates in the lysosomes of many organs and tissues contributing to the pathology associated with MPS II. The objective of this phase I/II clinical study was to evaluate the efficacy and safety of recombinant human iduronate-2-sulfatase (idursulfase beta, Hunterase®) in the treatment of MPS II.MethodsThirty-one MPS II patients between 6 and 35 years of age were enrolled in a randomized, single-blinded, active comparator-controlled phase I/II trial for 24 weeks. Patients were randomized to active comparator infusions (N=11), 0.5 mg/kg idursulfase beta infusions (N=10), or 1.0 mg/kg idursulfase beta infusions (N=10). The primary efficacy variable was the level of urinary GAG excretion. The secondary variables were changes in the distance walked in 6 minutes (6-minute walk test, 6MWT), echocardiographic findings, pulmonary function tests, and joint mobility.ResultsPatients in all three groups exhibited reduction in urine GAG and this reduced GAG level was maintained for 24 weeks. Urine GAG was also significantly reduced in the 0.5 mg/kg and 1.0 mg/kg idursulfase beta groups when compared to the active comparator group (P = 0.043, 0.002, respectively). Changes in 6MWT were significantly greater in the 0.5 mg/kg and 1.0 mg/kg idursulfase groups than in the active comparator group (p= 0.003, 0.015, respectively). Both idursulfase beta infusions were generally safe and well tolerated, and elicited no serious adverse drug reactions. The most frequent adverse events were urticaria and skin rash, which were easily controlled with administration of antihistamines.ConclusionsThis study indicates that idursulfase beta generates clinically significant reduction of urinary GAG, improvements in endurance as measured by 6MWT, and it has an acceptable safety profile for the treatment of MPS II.Trial registrationClinicalTrials.gov: NCT01301898
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.