In contrast to a substantial progress of heavy metal-free green and red emitters exclusively from indium phosphide (InP) quantum dots (QDs), the development of non-Cd blue QDs remains nearly unexplored. The synthesis of blue InP QDs with a bright, deep-blue emissivity is not likely viable, which is primarily associated with their intrinsic size limitation. To surmount this challenge, herein, the first synthesis of blue-emissive ternary InGaP QDs through In3+-to-Ga3+ cation-exchange strategy is implemented. Pregrown InP QDs turn out to be efficiently Ga-alloyed at a relatively low temperature of 280 °C in the presence of Ga iodide (GaI3), and the degree of Ga alloying is also found to be systematically adjustable by varying GaI3 amounts. Such cation-exchanged InGaP cores are surface-passivated sequentially with ZnSeS inner and ZnS outer shells. As the amount of GaI3 added for cation exchange increases, the resulting double-shelled InGaP/ZnSeS/ZnS QDs produce consistent blue shifts in photoluminescence (PL) from 475 to 465 nm, while maintaining high PL quantum yield in the range of 80–82%. Among a series of QD samples, above 465 nm emitting InGaP/ZnSeS/ZnS QDs are further employed as an emitting layer of an all-solution-processed electroluminescent device. This unprecedented InGaP QD-based blue device generates maximum values of 1038 cd/m2 in luminance and 2.5% in external quantum efficiency.
We propose a new LCD mode named as Charge-Pumped Super Patterned Vertical Alignment (CP S-PVA) which can utilize 1G-1D driving. In this mode, the voltage difference between two subpixels is controlled by a unique charge-pumped structure. This results in equal level of off-axis image quality and transmittance to TT S-PVA. Moreover, this new mode has good production yield and production margin. Operation schemes and display performance of CP S-PVA are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.