Background: The gut microbiome, a dynamic bacterial community that interacts with the host, is integral to human health because it regulates energy metabolism and immune functions. The gut microbiome may also play a role in risks from environmental toxicants.Objectives: We investigated the effects of polychlorinated biphenyls (PCBs) and exercise on the composition and structure of the gut microbiome in mice.Methods: After mice exercised voluntarily for 5 weeks, they were treated by oral gavage with a mixture of environmentally relevant PCB congeners (PCB153, PCB138, and PCB180; total PCB dose, 150 µmol/kg) for 2 days. We then assessed the microbiome by determination of 16S rRNA using microarray analysis.Results: Oral exposure to PCBs significantly altered the abundance of the gut microbiome in mice primarily by decreasing the levels of Proteobacteria. The activity level of the mice correlated with a substantial shift in abundance, biodiversity, and composition of the microbiome. Importantly, exercise attenuated PCB-induced changes in the gut microbiome.Conclusions: Our results show that oral exposure to PCBs can induce substantial changes in the gut microbiome, which may then influence their systemic toxicity. These changes can be attenuated by behavioral factors, such as voluntary exercise.
Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light–dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques, a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii, a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.
The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)alpha or PPARgamma attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARgamma agonists and silencing of PPARalpha or PPARgamma, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.
HIV-1-infected brains are characterized by increased amyloid deposition. To study the influence of HIV-1 on amyloid beta (Aβ) homeostasis at the blood-brain barrier (BBB) level, we employed a model of brain microvascular endothelial cells exposed to HIV-1 in the presence or absence of Aβ. HIV-1 markedly increased endogenous Aβ levels and elevated accumulation of exogenous Aβ. Simvastatin, the HMG-CoA reductase inhibitor, blocked these effects. We next evaluated the effects of HIV-1 and/or simvastatin on expression of the receptor for lipoprotein related protein (LRP1) and the receptor for advanced glycation end products (RAGE), known to regulate Aβ transport across the BBB. LRP1 expression was not affected by HIV-1; however, it was increased by simvastatin. Importantly, simvastatin attenuated HIV-1-induced RAGE expression. These results suggest that HIV-1 may directly contribute to Aβ accumulation at the BBB level. In addition, statins may protect against increased Aβ levels associated with HIV-1 infection in the brain.
Our results suggest that estrogen may protect against Tat-induced inflammatory reactions in human vascular endothelium via blocking the NF-kappaB-mediated molecular signaling pathways. These data may contribute to understanding the pathogenesis of cardiovascular complications and development of therapeutic strategies for HIV-infected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.