It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.
We calculate the surface plasmon dispersion relations for a periodic chain of spherical metallic nanoparticles in an isotropic host, including all multipole modes in a generalized tight-binding approach. For sufficiently small particles (kd ≪ 1, where k is the wave vector and d is the interparticle separation), the calculation is exact. The lowest bands differ only slightly from previous point-dipole calculations provided the particle radius a < ∼ d/3, but differ substantially at smaller separation. We also calculate the dispersion relations for many higher bands, and estimate the group velocity v g and the exponential decay length ξ D for energy propagation for the lowest two bands due to single- Finally, we reformulate the band structure equations for a Drude metal in the time domain, and suggest how to include localized driving electric fields in the equations of motion.
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.