-Gallium nitride (GaN) is a promising material for next-generation high-power applications due to its wide bandgap, high breakdown field, high electron mobility, and good thermal conductivity. From a structure point of view, the vertical device is more suitable to high-power applications than planar devices because of its area effectiveness. However, it is challenging to obtain a completely upright vertical structure due to inevitable sidewall slope in anisotropic etching of GaN. In this letter, we design and analyze the enhancement-mode n-channel vertical GaN MOSFET with variation of sidewall gate angle by two-dimensional (2D) technology computer-aided design (TCAD) simulations. As the sidewall slope gets closer to right angle, the device performances are improved since a gradual slope provides a leakage current path through the bulk region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.