High-quality Bi2Se3 thin films with topological insulating properties at room temperature have recently attracted much attention as one of the promising materials for realizing innovative electronic and optoelectronic devices. Here, we report the high crystallinity growth of Bi2Se3 thin films on a patterned sapphire substrate (PSS) by using a vapor-phase transport deposition with minimizing thermal dissociation of Se atoms vaporized in Bi2Se3 powder. This PSS not only reduces the large dislocation of heterogeneously grown Bi2Se3 on a sapphire substrate but also induces enhanced light absorption in the visible to near-infrared (IR) ranges compared to Bi2Se3 on planar sapphire substrates. Thus, the Bi2Se3 thin film laterally grown on the PSS reveals uniform surface properties and high crystallinity in the rhombohedral lattice phase with a full width at half maximum of 0.06 ° for the XRD (003) peak. Also, the photoresponse of the fabricated IR conversion device using Bi2Se3/PSS heterostructure exhibits excellent performance and high reliability with no degradation after continuous switching. As a result, the device constructed with the Bi2Se3/PSS exhibits one order of magnitude higher NIR induced-photocurrent and 1–2 orders of magnitude faster photo-switching than that with Bi2Se3/Al2O3. Such an enhancement in the device performance of Bi2Se3/PSS is confirmed by the increased absorption spectra in visible and NIR ranges and the improved light absorption distribution.
As the development of autonomous driving technology is now in full swing, the demand for miniaturized optical modules mounted on various sensors has increased. Particularly, the optical lens used for such autonomous driving must demonstrate stable performance and durability despite rapid changes in the external environment. In this regard, cubic zirconia (CZ) can be used as an optical lens due to its high refractive index, which is above 2.1 in visible and near-infrared wavelengths, along with its chemical and mechanical durability. Thus, in this paper, we investigated the temperature-dependent physical properties of CZ fabricated by the skull melting method. The temperature coefficient of the refractive index (dn/dT) of the fabricated CZ plate in the temperature range of 25–100 °C decreased from 9.76 × 10−5/K to 7.00 × 10−5/K as the wavelength increased from 447.0 nm to 785.0 nm. The estimated Abbe number decreased from 33.98 at 25 °C to 33.12 at 100 °C, while the measured coefficient of thermal expansion (CTE) was 9.91 × 10−6/K, which revealed that the dn/dT value of the CZ plate was more affected by the dispersion than by the CTE. In addition, the CZ samples with a high refractive index, coated with a dielectric multilayer showed a high average transmittance of 98.2% at the investigated wavelengths, making it suitable for miniaturization or wide-angle optical lens modules. To secure the durability required for automobile lenses, the variation in the surface profile of the CZ before and after the external impact was also analyzed, revealing much better performance than TAF glass. Therefore, the observed results demonstrate that the CZ material is suitable for use as an optical lens for autonomous vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.