The digital implementation of mandibular movement using a 3D optical scanner and target tracking system is not prone to the same restrictions and limitations inherent in mechanical equipment; therefore, it is possible to reconstruct more realistic movement(s). This technique can be used in a wide variety of dental applications involving movement of the mandibular jaw, such as fabrication of dental prostheses, or for the diagnosis and treatment of temporomandibular joint disease.
Abstract:In optical 3D shape measurement, stereo vision with structured light can measure 3D scan data with high accuracy and is used in many applications, but fine surface detail is difficult to obtain. On the other hand, photometric stereo can capture surface details but has disadvantages, in that its 3D data accuracy drops and it requires multiple light sources. When the two measurement methods are combined, more accurate 3D scan data and detailed surface features can be obtained at the same time. In this paper, we present a 3D optical measurement technique that uses re-projection of images to implement photometric stereo without an external light source. 3D scan data is enhanced by combining normal vector from this photometric stereo method, and the result is evaluated with the ground truth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.