This study suggests that the proposed PRO-SMART is feasible and accessible for assessment of symptomatic AEs in cancer patients receiving chemotherapy for a prospective randomized trial.
ObjectiveThe objective of the present study was to validate genes and genomic regions associated with carcass weight using a low-density single nucleotide polymorphism (SNP) Chip in Hanwoo cattle breed.MethodsCommercial Hanwoo steers (n = 220) were genotyped with 20K GeneSeek genomic profiler BeadChip. After applying the quality control of criteria of a call rate ≥90% and minor allele frequency (MAF) ≥0.01, a total of 15,235 autosomal SNPs were left for genome-wide association (GWA) analysis. The GWA tests were performed using single-locus mixed linear model. Age at slaughter was fitted as fixed effect and sire included as a covariate. The level of genome-wide significance was set at 3.28×10−6 (0.05/15,235), corresponding to Bonferroni correction for 15,235 multiple independent tests.ResultsBy employing EMMAX approach which is based on a mixed linear model and accounts for population stratification and relatedness, we identified 17 and 16 loci significantly (p<0.001) associated with carcass weight for the additive and dominant models, respectively. The second most significant (p = 0.000049) SNP (ARS-BFGL-NGS-28234) on bovine chromosome 4 (BTA4) at 21 Mb had an allele substitution effect of 43.45 kg. Some of the identified regions on BTA2, 6, 14, 22, and 24 were previously reported to be associated with quantitative trait loci for carcass weight in several beef cattle breeds.ConclusionThis is the first genome-wide association study using SNP chips on commercial Hanwoo steers, and some of the loci newly identified in this study may help to better DNA markers that determine increased beef production in commercial Hanwoo cattle. Further studies using a larger sample size will allow confirmation of the candidates identified in this study.
Abstract. We evaluated several multivariate stream data reduction techniques that can be used in sensor network applications. The evaluated techniques include Wavelet-based methods, sampling, hierarchical clustering, and singular value decomposition (SVD). We tested the reduction methods over the range of different parameters including data reduction rate, data types, number of dimensions and data window size of the input stream. Both real and synthetic time series data were used for the evaluation. The results of experiments suggested that the reduction techniques should be evaluated in the context of applications, as different applications generate different types of data and that has a substantial impact on the performance of different reduction methods. The findings reported in this paper can serve as a useful guideline for sensor network design and construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.