In 2015, air pollutant emissions in the Republic of Korea were 792,776 metric tons of CO, 1,157,728 metric tons of NOx, 352,292 metric tons of SOx, 604,243 metric tons of TSP, 233,177 metric tons of PM10, 98,806 tons of PM2.5, 15,934 metric tons of BC, 1,010,771 metric tons of VOCs, and 297,167 metric tons of NH3. Among major emission source categories, the main emission sources and the contributions to emissions, by pollutant, were as follows: road transport (31.0%), biomass burning (29.3%), and non-road transport (17.1%) for CO; road transport (31.9%), non-road transport (26.3%), and manufacturing industry (14.6%) for NOx; industrial processes (29.9%), energy production (25.9%), and manufacturing industry (24.2%) for SOx; fugitive dust (67.6%) manufacturing industry (20.1%) for TSP; fugitive dust (47.0%) and manufacturing industry (30.4%) for PM10; manufacturing industry (36.8%), fugitive dust (17.5%), and non-road transport (14.3%) for PM2.5; road transport (42.0%) and non-road transport(39.6%) for BC; solvent use (54.9%) and industrial processes (18.1%) for VOCs; and agriculture (77.8%) and industrial processes (13.3%) for NH3. The data we calculate can be used as official national emissions data for the establishment, implementation, and assessment of air quality-related policy, such as measures to deal with particulate matter, as well as for related modeling and other research.
Local governments are establishing their own greenhouse gas reduction goal and are playing a important role to respond to climatic changes. However, there are difficulties in quantitative analyses such as estimation of future greenhouse gas emission and computation of reduction potential, which are procedures required to establish mid to long term strategies to realize of low carbon society by each local governments. Also, reduction measures must reflect characteristics of each local government, since the reduction power of each local government can differ according to characteristics of each. In order to establish strategies that reflect characteristics of local governments, types of greenhouse gas emission from cities were classified largely into residential city, commercial city, residential commercial city, agriculture and fishery city, convergence city, and industrial city. As a result of analyzing basic unit of greenhouse gas emission by local government during 2007 in terms of per population, household and GRDP based on the type classification, significant results were deduced for each type. To manage the amount of the national greenhouse gas, reduction measures should be focused on the local governments that emits more than the average of each type's GHG emission.
The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.Mention of any firm or licensed process does not imply the endorsement of the United Nations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.