The least absolute shrinkage and selection operator (LASSO) is a popular method for a high-dimensional regression model. LASSO has high prediction accuracy; however, it also selects many irrelevant variables. In this paper, we consider the moderately clipped LASSO (MCL) for the high-dimensional generalized linear model which is a hybrid method of the LASSO and minimax concave penalty (MCP). The MCL preserves advantages of the LASSO and MCP since it shows high prediction accuracy and successfully selects relevant variables. We prove that the MCL achieves the oracle property under some regularity conditions, even when the number of parameters is larger than the sample size. An efficient algorithm is also provided. Various numerical studies confirm that the MCL can be a better alternative to other competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.