Figure 1. Multi-domain image-to-image translation results on the CelebA dataset via transferring knowledge learned from the RaFD dataset. The first and sixth columns show input images while the remaining columns are images generated by StarGAN. Note that the images are generated by a single generator network, and facial expression labels such as angry, happy, and fearful are from RaFD, not CelebA.
AbstractRecent studies have shown remarkable success in imageto-image translation for two domains. However, existing approaches have limited scalability and robustness in handling more than two domains, since different models should be built independently for every pair of image domains. To address this limitation, we propose StarGAN, a novel and scalable approach that can perform image-to-image translations for multiple domains using only a single model. Such a unified model architecture of StarGAN allows simultaneous training of multiple datasets with different domains within a single network. This leads to StarGAN's superior quality of translated images compared to existing models as well as the novel capability of flexibly translating an input image to any desired target domain. We empirically demonstrate the effectiveness of our approach on a facial attribute transfer and a facial expression synthesis tasks.
Abstract-Patch generation is an essential software maintenance task because most software systems inevitably have bugs that need to be fixed. Unfortunately, human resources are often insufficient to fix all reported and known bugs. To address this issue, several automated patch generation techniques have been proposed. In particular, a genetic-programming-based patch generation technique, GenProg, proposed by Weimer et al., has shown promising results. However, these techniques can generate nonsensical patches due to the randomness of their mutation operations.To address this limitation, we propose a novel patch generation approach, Pattern-based Automatic program Repair (PAR), using fix patterns learned from existing human-written patches. We manually inspected more than 60,000 human-written patches and found there are several common fix patterns. Our approach leverages these fix patterns to generate program patches automatically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.