LiDAR-based Simultaneous Localization And Mapping (SLAM), which provides environmental information for autonomous vehicles by map building, is a major challenge for autonomous driving. In addition, the semantic information has been used for the LiDAR-based SLAM with the advent of deep neural network-based semantic segmentation algorithms. The semantic segmented point clouds provide a much greater range of functionality for autonomous vehicles than geometry alone, which can play an important role in the mapping step. However, due to the uncertainty of the semantic segmentation algorithms, the semantic segmented point clouds have limitations in being directly used for SLAM. In order to solve the limitations, this paper proposes a semantic segmentation-based LiDAR SLAM system considering the uncertainty of the semantic segmentation algorithms. The uncertainty is explicitly modeled by proposed probability models which are come from the data-driven approaches. Based on the probability models, this paper proposes semantic registration which calculates the transformation relationship of consecutive point clouds using semantic information with proposed probability models. Furthermore, the proposed probability models are used to determine the semantic class of the points when the multiple scans indicate different classes due to the uncertainty. The proposed framework is verified and evaluated by the KITTI dataset and outdoor environments. The experiment results show that the proposed semantic mapping framework reduces the errors of the mapping poses and eliminates the ambiguity of the semantic information of the generated semantic map.
LiDAR-based localization has been widely used for the pose estimation of autonomous vehicles. Since the localization requires a sustainable map reflecting environment changes, a map update framework based on crowd-sourcing measurements has been researched. Unfortunately, a point cloud map occupies too large data size to transmit data in the uploading and downloading of the map update framework. To realize the LiDAR map update framework by reducing the data size, we proposed a novel map update framework using a Geodetic Normal Distribution (GND) map that compresses the point cloud to the normal distributions. The proposed GND map update framework comprises two parts: map change detection based on crowd-sourcing vehicles and map updating based on a map cloud server. GND map changes are detected based on an evidence theory considering geometric relationships between the GND map and crowd-sourcing measurements and uploaded to the map cloud server. Uploaded map changes reproduce representative map changes based on a similarity-based clustering, which are updated into the GND map. The proposed framework was evaluated in simulations and real environments on construction sites. As a result, although partial map changes occurred, the GND map was kept up-to-date through the proposed framework and the localization for autonomous driving was performed successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.