With detailed sensor and visual data from automobiles, a data-driven model can learn to classify crash-related events during a drive. We propose a neural network model accepting time-series vehicle sensor data and forward-facing videos as input for learning classification of crash-related events and varying types of such events. To elaborate, a novel recurrent neural network structure is introduced, namely, denoising gated recurrent unit with decay, in order to deal with time-series automobile sensor data with missing value and noises. Our model detects crash and near-crash events based on a large set of time-series data collected from naturalistic driving behavior. Furthermore, the model classifies those events involving pedestrians, a vehicle in front, or a vehicle on either side. The effectiveness of our model is evaluated with more than two thousand 30-s clips from naturalistic driving behavior data. The results show that the model, including sensory encoder with denoising gated recurrent unit with decay, visual encoder, and attention mechanism, outperforms gated recurrent unit with decay, gated CNN, and other baselines not only in event classification and but also in event-type classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.