Indoor environmental quality, e.g. air quality and thermal environments, has a potential impact on residents in indoors. Development of a computer simulated person (CSP) for indoor computational fluid dynamics (CFD) simulation can contribute to the improvement of design and prediction method regarding the interaction between indoor air/thermal environmental factors and human responses. In this study, a CSP integrated with a virtual airway was developed and used to estimate inhalation exposure in an indoor environment. The virtual airway is a numerical respiratory tract model for CFD simulation that reproduces detailed geometry from the nasal/oral cavity to the bronchial tubes by way of the trachea. Physiologically based pharmacokinetic (PBPK)-CFD hybrid analysis is also integrated into the CSP. Through the coupled simulation of PBPK-CFD-CSP analysis, inhalation exposure under steady state conditions where formaldehyde was emitted from floor material was analysed and respiratory tissue doses and their distributions of inhaled contaminants are discussed quantitatively.
Ganglion cell complex thickness was significantly reduced in eyes with preperimetric glaucoma. Ganglion cell complex imaging using spectral-domain optical coherence tomography may be a useful ancillary modality for detection of early macular changes in glaucomatous eyes with localized retinal nerve fibre layer defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.