Coronary artery bypass grafting is commonly used to treat cardiovascular diseases by replacing blocked blood vessels with autologous or artificial blood vessels. Nevertheless, the availability of autologous vessels in infants and the elderly and low long-term patency rate of grafts hinder extensive application of autologous vessels in clinical practice. The biological and mechanical properties of the resealable antithrombotic artificial vascular graft (RAAVG) fabricated herein, comprising a bioelectronic conduit based on a tough self-healing polymer (T-SHP) and a lubricious inner coating, match with the functions of autologous blood vessels. The self-healing and elastic properties of the T-SHP confer resistance against mechanical stimuli and promote conformal sealing of suturing regions, thereby preventing leakage (stable fixation under a strain of 50%). The inner layer of the RAAVG presents antibiofouling properties against blood cells and proteins, and antithrombotic properties, owing to its lubricious coating. Moreover, the blood-flow sensor fabricated using the T-SHP and carbon nanotubes is seamlessly integrated into the RAAVG via self-healing and allows highly sensitive monitoring of blood flow at low and high flow rates (10- and 100 mL min–1, respectively). Biocompatibility and feasibility of RAAVG as an artificial graft were demonstrated via ex vivo, and in vivo experiment using a rodent model. The use of RAAVGs to replace blocked blood vessels can improve the long-term patency rate of coronary artery bypass grafts.
In this study, we propose a novel, multiturn histology coil for microscopic magnetic resonance (MR) imaging of histological tissue slices with substantially higher signal-to-noise-ratio (SNR) outcomes compared with previously developed coils. We performed electromagnetic simulations of the proposed coils and acquired MR images from a gelatin phantom and a rat brain slice with the implemented coils. The performances of the coils were evaluated by comparing the measured and simulated radio-frequency transmission (B1 + ) fields in a flip-angle map form, and with low flip-angle gradient echo images to calculate the SNR increase as a function of the number of turns (n) of the coils. This study was performed on a 3 T MR imaging system. The proposed coil with n = 7 achieved SNR greater than 3.5 times that of a single-turn coil while preserving the highly uniform B1 + field across the imaging region. The proposed method provides new possibilities for high-resolution MR imaging of microscopic tissue samples for biomedical applications.INDEX TERMS magnetic resonance imaging (MRI), microscopy, signal-to-noise ratio (SNR), radiofrequency (RF), Multiturn planar inductor (MTPI)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.