The detection and segmentation of thrombi are essential for monitoring the disease progression of abdominal aortic aneurysms (AAAs) and for patient care and management. As they have inherent capabilities to learn complex features, deep convolutional neural networks (CNNs) have been recently introduced to improve thrombus detection and segmentation. However, investigations into the use of CNN methods is in the early stages and most of the existing methods are heavily concerned with the segmentation of thrombi, which only works after they have been detected. In this work, we propose a fully automated method for the whole process of the detection and segmentation of thrombi, which is based on a well-established mask region-based convolutional neural network (Mask R-CNN) framework that we improve with optimized loss functions. The combined use of complete intersection over union (CIoU) and smooth L1 loss was designed for accurate thrombus detection and then thrombus segmentation was improved with a modified focal loss. We evaluated our method against 60 clinically approved patient studies (i.e., computed tomography angiography (CTA) image volume data) by conducting 4-fold cross-validation. The results of comparisons to multiple other state-of-the-art methods suggested the superior performance of our method, which achieved the highest F1 score for thrombus detection (0.9197) and outperformed most metrics for thrombus segmentation.
Abdominal aortic aneurysm (AAA) is a fatal clinical condition with high mortality. Computed tomography angiography (CTA) imaging is the preferred minimally invasive modality for the long-term postoperative observation of AAA. Accurate segmentation of the thrombus region of interest (ROI) in a postoperative CTA image volume is essential for quantitative assessment and rapid clinical decision making by clinicians. Few investigators have proposed the adoption of convolutional neural networks (CNN). Although these methods demonstrated the potential of CNN architectures by automating the thrombus ROI segmentation, the segmentation performance can be further improved. The existing methods performed the segmentation process independently per 2D image and were incapable of using adjacent images, which could be useful for the robust segmentation of thrombus ROIs. In this work, we propose a thrombus ROI segmentation method to utilize not only the spatial features of a target image, but also the volumetric coherence available from adjacent images. We newly adopted a recurrent neural network, bi-directional convolutional long short-term memory (Bi-CLSTM) architecture, which can learn coherence between a sequence of data. This coherence learning capability can be useful for challenging situations, for example, when the target image exhibits inherent postoperative artifacts and noises, the inclusion of adjacent images would facilitate learning more robust features for thrombus ROI segmentation. We demonstrate the segmentation capability of our Bi-CLSTM-based method with a comparison of the existing 2D-based thrombus ROI segmentation counterpart as well as other established 2D- and 3D-based alternatives. Our comparison is based on a large-scale clinical dataset of 60 patient studies (i.e., 60 CTA image volumes). The results suggest the superior segmentation performance of our Bi–CLSTM-based method by achieving the highest scores of the evaluation metrics, e.g., our Bi-CLSTM results were 0.0331 higher on total overlap and 0.0331 lower on false negative when compared to 2D U-net++ as the second-best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.