In Long Range Wide Area Network (LoRaWAN), the data rate of the devices can be adjusted to optimize the throughput by changing the spreading factor. However, the adaptive data rate has to be carefully utilized because the collision probability, which directly affects the throughput, is changed according to the use of spreading factors. Namely, the greater the number of devices using the same spreading factor, the greater the probability of collision, resulting in a decrease of total throughput. Nevertheless, in the current system, the only criteria to determine the data rate to be adjusted is a link quality. Therefore, contention-aware adaptive data rate should be designed for the throughput optimization. Here, the number of devices which can use a specific data rate is restricted, and accordingly the optimization problem can be regarded as constrained optimization. To find an optimal solution, we adopt the gradient projection method. By adjusting the data rate based on the retrieved set of optimal data rate, the system performance can be significantly improved. The numerical results demonstrate that the proposed method outperforms the comparisons regardless of the number of devices and is close to the theoretical upper bound of throughput.
Time synchronization and localization in underwater environment are challenging due to high propagation delay, time measurement error, and node mobility. Although synchronization and localization depend on each other and have the similar process, they have been usually handled separately. In this paper, we suggest time synchronization and localization based on the semiperiodic property of seawater movement, called SLSMP. Firstly, we analyze error factors in time synchronization and localization and then propose a method to handle those errors. For more accurate synchronization, SLSMP controls the transmission instant by exploiting the pattern of seawater movement and node deployment. Then SLSMP progressively decreases the localization errors by applying the Kalman filter or averaging filter. Finally, INS (inertial navigation system) is adopted to relieve localization error caused by node mobility and error propagation problem. The simulation results show that SLSMP reduces time synchronization error by 2.5 ms and 0.56 ms compared with TSHL and MU-Sync, respectively. Also localization error is lessened by 44.73% compared with the single multilateration.
Medium Access Control (MAC) delay which occurs between the anchor node’s transmissions is one of the error sources in underwater localization. In particular, in AUV localization, the MAC delay significantly degrades the ranging accuracy. The Cramer-Rao Low Bound (CRLB) definition theoretically proves that the MAC delay significantly degrades the localization performance. This paper proposes underwater localization combined with multiple access technology to decouple the localization performance from the MAC delay. Towards this goal, we adopt hyperbolic frequency modulation (HFM) signal that provides multiplexing based on its good property, high-temporal correlation. Owing to the multiplexing ability of the HFM signal, the anchor nodes can transmit packets without MAC delay, i.e., simultaneous transmission is possible. In addition, the simulation results show that the simultaneous transmission is not an optional communication scheme, but essential for the localization of mobile object in underwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.