Composite nanofiber mats (HA/TiO2) consisting of hydroxyapatite (HA) and titania (TiO2) were fabricated via an electrospinning technique and then collagen (type I) was immobilized on the surface of the HA/TiO2 composite nanofiber mat to improve tissue compatibility. The structure and morphology of the collagen-immobilized composite nanofiber mat (HA/TiO2-col) was investigated using an X-ray diffractometer, electron spectroscopy for chemical analysis, and scanning electron microscope. The potential of the HA/TiO2-col composite nanofiber mat for use as a bone scaffold was assessed by an experiment with osteoblastic cells (MC3T3-E1) in terms of cell adhesion, proliferation, and differentiation. The results showed that the HA/TiO2-col composite nanofiber mats possess better cell adhesion and significantly higher proliferation and differentiation than untreated HA/TiO2 composite nanofiber mats. This result suggests that the HA/TiO2-col composite nanofiber mat has a high-potential for use in the field of bone regeneration and tissue engineering.
Piston and screw type extruders were used to prepare calcium phosphate blocks comprising macro-pores interconnected with micro-pores for bone substitutes and scaffolds. First, dicalcium phosphate dehydrate (DCPD, CaHPO 4 ·2H 2 O), calcium nitrate tetrahydrate (CN, Ca(NO 3 ) 2 ·4H 2 O), hydroxyapatite (HAp, Ca 10 (PO 4 ) 6 (OH) 2 ), and polymer (poly-methyl methactrylate PMMA, (C 5 O 2 H 8 ) n ) beads were mixed with lubricants and a plasticizer to make a paste using a table mixer. The paste prepared for the screw extruder was thicker than that prepared for the piston extruder. The pastes were kneaded more than three times and then extruded. The extruded rods were dried at 100 o C for 24hrs and sintered at 1250 o C for 5hrs in the air. The porosity increased with increasing amount of DCPD and CN in both systems. The porosity of the piston extruded rod was higher than that of the screw extruder rod for the same raw material composition, except for the pure HAp porous bodies. In contrast to the porosity, the compressive strength was decreased upon the addition of DCPD and CN. The screw extruded specimens showed higher compressive strength than piston extruded ones. The macro-pores generated from the PMMA polymer beads were interconnected by micro-pores generated by the reaction of DCPD and CN, which existed in the strut. The SEM images clearly showed that the piston extruder generated more micro-pores than the screw extruder. The reaction of DCPD and CN affects the porosity, compressive strength and pore structure of the porous blocks. Also, the extruding method affects the pore characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.